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Visualization of Graphs Graph Spectral Analysis

Graphs

Today we discuss visualization problems for data graphs. The overarching
problem is the following:

Main Problem
Given a graph find a low-dimensional representation of the graph.

As we shall see there are a several results that ultimately reduce to a
spectral analysis. Today we introduce the spectral based graph
representation.
We assume we are given either an adjacency matrix A or a weight matrix
W . Since W is a generalization of the binary adjacency matrix, we shall
use the matrix W more often. If you are given an unweighted graph, use
the adjacency matrix A instead of W .
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Databases of Graphs
Public Datasets

Here are several public databases:
1 Duke: https://dnac.ssri.duke.edu/datasets.php
2 Stanford: https://snap.stanford.edu/data/
3 Uni. Koblenz: http://konect.uni-koblenz.de/
4 M. Newman (U. Michigan):

http://www-personal.umich.edu/ mejn/netdata/
5 A.L. Barabasi (U. Notre Dame):

http://www3.nd.edu/ networks/resources.htm
6 UCI: https://networkdata.ics.uci.edu/resources.php
7 Google/YouTube: https://research.google.com/youtube8m/
8 Chemical Compounds: http://quantum-machine.org/datasets/
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Visualization Problem

Consider a graph (V, E ,W ) with n vertices and m = |E| edges. We want a
2-dimensional (planar) visualization of this graph.
Idea (due to Hall ’70): Let {x(1), x(2), · · · , x(n)} ⊂ R2 denote a
collection of n points in 2D-plane. Points are chosen so to minimize the
weighted sum of edge lengths:

J =
∑

(k,j)∈E
Wk,j‖x(k)− x(j)‖2

This is similar to Dirichlet energy except that each vertex has a 2D vector
attached to it instead of a scalar value. J can be rewritten more compactly
using the 2× n matrix X whose columns are the vectors {x(1), · · · , x(n)}:

X =
[

x(1) x(2) · · · x(n)
]
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The Objective Function J

Explicit expansion of criterion J :

J =
∑

(k,j)∈E
Wk,j‖x(k)− x(j)‖2 = 1

2

n∑
k,j=1

Wk,j‖x(k)− x(j)‖2 =

=
n∑

k,j=1
Wk,j‖x(k)‖2 −

n∑
k,j=1

Wk,jx(k)T x(j) =

=
n∑

k=1
Dk,k

(
x(k)T x(k)

)
−
∑
k,j

Wk,j
(

x(j)T x(k)
)

Remark x(k)T x(k) = (X T X )k,k and x(j)T x(k) = (X T X )j,k . Next we
write the sums in a more compact form using trace and matrix
multiplication notations.
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Traces and Commutation Relation
For a square matrix M ∈ Rr×r , its trace is defined as

trace(M) =
r∑

k=1
Mk,k

that is the sum of its diagonal elements.
For two matrices A ∈ Rp×q,B ∈ Rq×p:

trace(AB) =
p∑

k=1
(AB)k,k =

p∑
k=1

q∑
j=1

Ak,jBj,k =

=
q∑

j=1

p∑
k=1

Bj,kAk,j =
q∑

j=1
(BA)j,j = trace(BA).

This identity, trace(AB) = trace(BA), allows to introduce an inner
product on spaces of matrices of same size similar to the dot product
betwen vectors of same size: If U,V ∈ Rp×q then

〈U,V 〉 = trace(UT V ) = trace(V T U).
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The Objective Function J - cont.

Return to J :

J =
n∑

k=1
Dk,k

(
x(k)T x(k)

)
−
∑
k,j

Wk,j
(

x(j)T x(k)
)

=

=
n∑

k=1
Dk,k(X T X )k,k−

∑
k,j

Wk,j(X T X )j,k = trace(DX T X )−trace(WX T X ) =

= trace((D −W )X T X ) = trace(X ·∆ · X T )

where the graph Laplacian ∆ = D −W is defined in terms of the diagonal
matrix D = diag(W · 1) and the weight matrix W .
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Constraints

The objective is to minimize J = X ·∆ · X T over the 2× n matrix X . The
global minimum is reached for instance by X = 0. This says that all points
scrum in one location (the origin). To avoid this phenomenon we
introduce constraints. First, each row of X should have norm 1. However
there is a non-informative solution given by the constant matrix 1√

n 12×n:
∆1n×2 = 0. To avoid this case we ask that each row of X to be
orthogonal to the constant vector 1, i.e. X · 1 = 0. Lastly, to make sure
the first row of X does not repeat in the second row, we ask them to be
linearly independent. Even stronger, we ask the rows of X to be
orthogonal vectors in Rn. A compact form of these three conditions
(normalization and orthogonalities):

XX T = I2 , X · 1 = 0
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Optimization Problem

Putting everything together, we obtain the optimization problem

min
X ∈ R2,n

X1 = 0
XX T = I2

trace(X∆X T )

Luckily there is an easy algorithm to solve this problem. It is based on
computing eigenpairs of the graph Laplacian ∆.
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Graph Visualization Spectral Algorithm

Algorithm (Graph Visualization Spectral Algorithm)
Input: An adjacency matrix A or a weight matrix W .

1 Compute the graph Laplacian ∆ = D − A, or ∆ = D −W .
2 Compute the lowest three eigenpairs (e1, λ1), (e2, λ2), (e3, λ3), where

∆ek = λkek , ‖ek‖ = 1, and 0 = λ1 ≤ λ2 ≤ λ3.
3 Construct the 2× n matrix X

X =
[

eT
2

eT
3

]
.

Output: Columns of matrix X are the n 2-dimensional vectors
{x(1), · · · , x(n)}.
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Examples

See the Matlab simulations: circulant matrix case; perturbations.
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Why the eigenpairs optimize the criterion?

The significant result: The Courant-Fisher criterion and Rayleight
quotient.

Theorem
Assume T is a real symmetric n × n matrix. Then:

1 All eigenvalues of T are real numbers.
2 There are n eigenvectors that can be normalized to form an

orthonormal basis for Rn.
3 The largest (principal) eigenpair (emax , λmax ) and the smallest

eigenpair (emin, λmin) satisfy

(emax ), λmax ) = (arg) max
x 6=0

〈Tx , x〉
〈x , x〉 , (emin, λmin) = arg min

x 6=0

〈Tx , x〉
〈x , x〉
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Why the eigenpairs optimize the criterion? -cont

Theorem
Assume T is a real symmetric n × n matrix. Then:

4 Assume (e1, ..., ek) are the eigenvectors associated to the largest k
eigenvalues. Then

(ek+1, λk+1) = arg max
x 6=0,〈x ,e1〉=···=〈x ,xk〉=0

〈Tx , x〉
〈x , x〉

5 Assume (en−k+1, ..., en) are the eigenvectors associated to the
smallest k eigenvalues. Then

(en−k , λn−k) = arg min
x 6=0,〈x ,en−k+1〉=···=〈x ,xn〉=0

〈Tx , x〉
〈x , x〉
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Spectral Analysis
Basic Properties

Last time we learned how to construct: the Adjacency matrix A, the
Degree matrix D, the (unnormalized symmetric) graph Laplacian matrix
∆ = D − A, the normalized Laplacian matrix ∆̃ = D†/2∆D†/2, and the
normalized asymmetric Laplacian matrix L = D†∆.

We denote: n the number of vertices (also known as the size of the
graph), m the number of edges, d(v) the degree of vertex v , d(i , j) the
distance between vertex i and vertex j (length of the shortest path
connecting i to j), and by Diam the diameter of the graph (the largest
distance between two vertices = ”longest shortest path”).
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Spectral Analysis
Basic Properties

In this section we summarize spectral properties of the Laplacian matrices.

Theorem
1 ∆ = ∆T ≥ 0, ∆̃ = ∆̃T ≥ 0 are positive semidefinite matrices.
2 eigs(∆̃) = eigs(L) ⊂ [0, 2].
3 0 is always an eigenvalue of ∆, ∆̃, L with same multiplicity. Its

multiplicity is equal to the number of connected components of the
graph.

4 λmax (∆) ≤ 2 maxv d(v), i.e. the lagest eigenvalue of ∆ is bounded
by twice the largest degree of the graph.
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Spectral Analysis
Basic Properties

Theorem

Let 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2 be the eigenvalues of ∆̃ (or L), that is
eigs(∆̃) = {λ0, λ1, · · · , λn−1} = eigs(L). Then:

1
∑n−1

i=0 λi ≤ n.
2
∑n−1

i=0 λi = n −#isolated vertices.
3 λ1 ≤ n

n−1 .
4 λ1 = n

n−1 if and only if the graph is complete (i.e. any two vertices
are connected by an edge).

5 If the graph is not complete then λ1 ≤ 1.
6 If the graph is connected then λ1 > 0. If λi = 0 and λi+1 6= 0 then

the graph has exactly i + 1 connected components.
7 If the graph is connected (no isolated vertices) then λn−1 ≥ n

n−1 .
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Spectral Analysis
Smallest nonnegative eigenvalue

Theorem

Assume the graph is connected. Thus λ1 > 0. Denote by D its diameter
and by dmax , d̄ , dH the maximum, average, and harmonic avergae of the
degrees (d1, · · · , dn):

dmax = max
j

dj , d̄ = 1
n

n∑
j=1

dj ,
1

dH
= 1

n

n∑
j=1

1
dj
.

Then
1 λ1 ≥ 1

nD .
2 Let µ = max1≤j≤n−1 |1− λj |. Then

1 + (n − 1)µ2 ≥ n
dH

(1− (1 + µ)( d̄
dH
− 1)).
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Spectral Analysis
Smallest nonnegative eigenvalue

Theorem

[continued]
3 Assume D ≥ 4. Then

λ1 ≤ 1− 2
√

dmax − 1
dmax

(1− 2
D ) + 2

D .
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Spectral Analysis
Comments on the proof

”Ingredients” and key relations:
1. Let f = (f1, f2, · · · , fn) ∈ Rn be a n-vector. Then:

〈∆f , f 〉 =
∑
x∼y

(fx − fy )2

where x ∼ y if there is an edge between vertex x and vertex y (i.e.
Ax ,y = 1).
This proves positivity of all operators.
2. Last time we showed eigs(∆̃) = eigs(L) because ∆̃ and L are similar
matrices.
3. 0 is an eigenvalue for ∆ with eigenvector 1 = (1, 1, · · · , 1). If multiple
connected components, define such a 1 vector for each component (and 0
on rest).
4. λmax (∆̃) = 1− λmin(D−1/2AD−1/2) ≤ 1 + |λmin(D−1/2AD−1/2)|.
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Spectral Analysis
Comments on the proof - 2

λmax (D−1/2AD−1/2) = max
‖f ‖=1

〈D−1/2AD−1/2f , f 〉 = max
‖f ‖=1

∑
i ,j

Ai ,j
fi√
di

fj√
dj

λmin(D−1/2AD−1/2) = min
‖f ‖=1

〈D−1/2AD−1/2f , f 〉

|λmin,max (D−1/2AD−1/2)| ≤ max
‖f ‖=1

∣∣∣〈D−1/2AD−1/2f , f 〉
∣∣∣ = max

‖f ‖=1

∣∣∣∣∣∑
i,j

Ai,j
fi√
di

fj√
dj

∣∣∣∣∣
Next use Cauchy-Schwartz to get∣∣∣∣∣∣

∑
i ,j

Ai ,j
fi√
di

fj√
dj

∣∣∣∣∣∣ ≤
∑

i

f 2
i
di

∑
j

Ai ,j =
∑

i
f 2
i = ‖f ‖2 = 1.

Thus λmax (∆̃) ≤ 2. Similarly λmax (∆) ≤ 2(maxi di ).

5. If the graph is connected, trace(∆̃) = n =
∑n−1

i=0 λi . Since λ0 = 0 we
get all statements of Theorem 2.
6. Theorem 3 is slightly more complicated (see [2]).
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Spectral Analysis
Special graphs: Cycles and Complete graphs

Cycle graphs: like a regular polygon.
Remark: Adjacency matrices are circulant, and so are ∆, ∆̃ = L.

Then argue the FFT forms a ONB of eigenvectors. Compute the
eigenvalues as FFT of the generating sequence.

Consequence: The normalized Laplacian has the following eigenvalues:
1 For cycle graph on n vertices: λk = 1− cos 2πk

n , 0 ≤ k ≤ n − 1.
2 For the complete graph on n vertices:

λ0 = 0 , λ1 = · · · = λn−1 = n
n − 1 .
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