Math 420, Spring 2019 Second Solo Homework: Introduction to the Threads

Due Tuesday, 12 February, 2019

Exercise 1. Compute $m_{i}, v_{i j}$, and $c_{i j}$ for each of the following groups of assets based on daily closing price data with uniform weights:
(i) VFINX, VBMFX, and VGSIX in 2018;
(ii) VFINX, VBMFX, and VGSIX in 2017 and 2018;
(iii) VFINX, VBMFX, VGSIX, VGTSX, VMVIX, and VTIBX in 2018;
(iv) VFINX, VBMFX, VGSIX, VGTSX, VMVIX, and VTIBX in 2017 and 2018.
a. Describe the assets VFINX, VBMFX, and VGSIX. Display m_{i} as a 3 -vector and $v_{i j}$ and $c_{i j}$ as 3×3-matrices for (i) and (ii). Explain the differences between these objects for groups (i) and (ii).
b. Compute a complete set of eigenpairs for the 3×3-matrices $v_{i j}$ for groups (i) and (ii). What conclusions do you draw from the eigenvalues about the dimensionality of these assets?
c. Describe the assets VGTSX, VMVIX, and VTIBX. Display m_{i} as a 6 -vector and $v_{i j}$ and $c_{i j}$ as 6×6-matrices for (iii) and (iv). Explain the differences between these objects for groups (iii) and (iv).
d. Compute a complete set of eigenpairs for the 6×6-matrices $v_{i j}$ for groups (iii) and (iv). What conclusions do you draw from the eigenvalues about the dimensionality of these assets?
e. Give explanations for the values of $c_{i j}$ you computed for groups (iii) and (iv).

Exercise 2. Consider the database QM9 of chemical compounds from http://quantummachine.org/datasets/ .

The datafile dsC7O2H10nsd_0001.xyz contains a geometric configuration of the 19-atom molecule $\mathrm{C}_{7} \mathrm{O}_{2} \mathrm{H}_{10}$.

To answer the following questions you need to write a piece of Matlab code that loads relevant parts of the dsC7O2H10nsd_0001.xyz file and processes it correctly.

The file structure is the following:
Line 1: number of atoms [19]
Line 2: Various information (disregard for now) - 16 fields
Line 3-21: 5 fields : Atom X Y Z Q
Lines 22,23: Various information (disregard for now).
Your task is to write a Matlab code that loads lines 3 to $2+n$, where here $n=19$ (the first field in the first line) and saves them into five vectors each of length $n=19$. Call the first vector Atom. It is a string composed of letters chosen from $\{H, C, O, F, N\}$. The next four n-vectors should be called X, Y, Z, Q respectively. For each atom k between 1 and n, the triple $(X(k), Y(k), Z(k))$ represents the coordinates of that atom, while $Q(k)$ is an electric charge associated to that atom.

If you load the data correctly, the first elements of the five vectors should read Atom $(1)=^{\prime}$ $C^{\prime}, X(1)=-1.8396130083, Y(1)=0.5292955664, Z(1)=3.1820679223, Q(1)=-0.414977$.
a. Write code that computes two $n \times n$ symmetric matrices V, W whose main diagonals are 0 and off-diagonal elements $V_{k, l}, W_{k, l}$ are given by

$$
V_{k, l}=\frac{Q(k) Q(l)}{\sqrt{(X(k)-X(l))^{2}+(Y(k)-Y(l))^{2}+(Z(k)-Z(l))^{2}}}, W_{k, l}=\left|V_{k, l}\right| .
$$

b. Compute the weighted graph Laplacians $\Delta=D-W$ and $\Delta^{V}=D^{V}-V$, where $D=\operatorname{diag}(W \cdot 1)$ and $D^{V}=\operatorname{diag}(V \cdot 1)$. Detemine which matrix is positive semidefinite (i.e., nonnegative eigenvalues). Plot for each the ordered eigenvalues.
c. For the weighted graph Laplacian δ, compute the normalized symmetric weighted graph Laplacian $\tilde{\Delta}=D^{-1 / 2} \Delta D^{-1 / 2}$ and the normalized asymmetric weighted graph Laplacian $L=D^{-1} \Delta$, where $D=\operatorname{diag}(W \cdot 1)$. Compute their eigenvalues, order them ascendingly, and plot these eigenvalues in separate plots.
d. Plot the three projections of the 19-atom molecule into planes $(X, Y),(X, Z)$, and (Y, Z). This means, plot $(X(1: n), Y(1: n)),(X(1: n, z(1: n))$, and $(Y(1: n), Z(1:$ $n)$), respectively.
e. Can you compute the normalized symmetric weighted graph Laplacian from Δ^{V} ? Why?

