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Introduction

We now apply the Kelly criterion to classes of Markowitz portfolios. Given
a daily return history {r(d)}Dd=1 on N risky assets, a daily return µsi on a
safe investment, and a daily return µcl on a credit line, the Markowitz
portfolio with allocation f in risky assets has the daily return history
{r(d , f)}Dd=1, where

r(d , f) = µrf(f)
(
1− 1Tf

)
+ r(d)Tf , (1.1)

with

µrf(f) =
{
µsi if 1Tf ≤ 1 ,
µcl if 1Tf > 1 .

(1.2)

The one risk-free rate model for risk-free assets assumes 0 < µsi = µcl.
The two risk-free rate model for risk-free assets assumes 0 < µsi < µcl.
Portfolios without risk-free assets satisfy the constraint 1Tf = 1.
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Introduction
We will consider only classes of solvent Markowitz portfolios. This means
that we require f ∈ Ω+ where

Ω+ =
{
f ∈ RN : 1 + r(d , f) > 0 ∀d

}
. (1.3)

It can be shown that r(d , f) is a concave function of f over RN for every
d . This means that for every d and every f0, f1 ∈ RN we can show that

r(d , ft) ≥ (1− t) r(d , f0) + t r(d , f1) for every t ∈ [0, 1] ,

where ft = (1− t) f0 + t f1. This concavity implies that for every f0,
f1 ∈ Ω+ and every t ∈ [0, 1] we have

1 + r(d , ft) ≥ 1 + (1− t) r(d , f0) + t r(d , f1)
= (1− t)

(
1 + r(d , f0)

)
+ t

(
1 + r(d , f1)

)
≥ 0 ,

whereby ft ∈ Ω+. Therefore Ω+ is a convex set.
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Introduction
The solvent Markowitz portfolio with allocation f has the growth rate
history {x(d , f)}Dd=1 where

x(d , f) = log
(
1 + r(d , f)

)
. (1.4)

Notice that the growth rate history is only defined for solvent portfolios.
Because r(d , f) is a concave function over f ∈ RN for every d while
log(1 + r) is an increasing, strictly concave function of r over r ∈ (−1,∞),
we can show that x(d , f) is a concave function of f over Ω+ for every d .
Indeed, for every f0, f1 ∈ Ω+ and every t ∈ [0, 1] we have

x(d , ft) = log
(
1 + r(d , ft)

)
≥ log

(
1 + (1− t) r(d , f0) + t r(d , f1)

)
≥ (1− t) log

(
1 + r(d , f0)

)
+ t log

(
1 + r(d , f1)

)
= (1− t) x(d , f0) + t x(d , f1) .
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Sample Estimators of the Growth Rate Mean
If we use an IID model for the class of solvent Markowitz portfolios then
the Kelly criterion says that for maximal long-term growth we should pick
f ∈ Ω+ to maximize the growth rate mean γ(f). Because we do not know
γ(f), we might maximize an estimator for γ(f). Here we explore sample
esitmators of γ(f).
Given and allocation f and weights {w(d)}Dd=1 such that

w(d) > 0 ∀d ,
D∑

d=1
w(d) = 1 , (2.5)

the growth rate history {x(d , f)}Dd=1 yields the sample estimator

γ̂(f) =
D∑

d=1
w(d) x(d , f) =

D∑
d=1

w(d) log
(
1 + r(d , f)

)
. (2.6)

This is clearly defined for every f ∈ Ω+.
C. David Levermore (UMD) Kelly Objectives for Markowitz Portfolios April 21, 2018



Intro Sample Estimators Without Risk-Free Mean-Variance Estimators With Risk-Free

Sample Estimators of the Growth Rate Mean

Here are some facts about γ̂(f) considered as a function over Ω+.
Fact 1. γ̂(0) = log(1 + µsi).
Fact 2. γ̂(f) is concave over Ω+.
Fact 3. For every f ∈ Ω+ we have the bound

γ̂(f) ≤ log
(
1 + µ̂(f)

)
, (2.7)

where µ̂(f) is the sample estimator of the return mean given by

µ̂(f) =
D∑

d=1
w(d) r(d , f) = µrf(f)

(
1− 1Tf

)
+

D∑
d=1

w(d) r(d)Tf

= µrf(f)
(
1− 1Tf

)
+ mTf .

(2.8)

Remark. Fact 1 shows that bound (2.7) is an equality when f = 0.
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Sample Estimators of the Growth Rate Mean

Proof of Fact 1. Definitions (1.1) and (1.2) of r(d , f) and µrf(f)
respectively show that

r(d , 0) = µrf(0)
(
1− 1T0

)
+ r(d)T0 = µrf(0) = µsi .

Then definition (2.6) of γ̂(f) yields

γ̂(0) =
D∑

d=1
w(d) log

(
1 + r(d , 0)

)
=

D∑
d=1

w(d) log(1 + µsi)

= log(1 + µsi) .

Therefore we have proved Fact 1. �
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Sample Estimators of the Growth Rate Mean

Proof of Fact 2. Because x(d , f) is a concave function of f over Ω+ for
every d , and because definition (2.6) shows that γ̂(f) is a linear
combination of these concave functions with positive coefficients, it
follows that γ̂(f) is concave over Ω+. This proves Fact 2. �
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Sample Estimators of the Growth Rate Mean

Our proof of Fact 3 uses the Jensen inequality. We will state and prove it
before giving our proof.

Jensen Inequality. Let g(z) be a convex (concave) function over an
interval [a, b]. Let the points {z(d)}Dd=1 lie within [a, b]. Let {w(d)}Dd=1
be nonnegative weights that sum to one. Then

g(z̄) ≤ g(z)
(

g(z) ≤ g(z̄)
)
, (2.9)

where

z̄ =
D∑

d=1
z(d) w(d) , g(z) =

D∑
d=1

g(z(d)) w(d) .

Remark. There is an integral version of the Jensen inequality that we do
not give here because we do not need it.
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Sample Estimators of the Growth Rate Mean
Proof of the Jensen Inequality. We consider the case when g(z) is
convex and differentiable over [a, b]. Then for every z̄ ∈ [a, b] we have the
inequality

g(z) ≥ g(z̄) + g ′(z̄)(z − z̄) for every z ∈ [a, b] .

This inequality simply says that the tangent line to the graph of g at z̄ lies
below the graph of g over [a, b]. By setting z = z(d) in the above
inequality, multiplying both sides by w(d), and summing over d we obtain

D∑
d=1

g(z(d)) w(d) ≥
D∑

d=1

(
g(z̄) + g ′(z̄)(z(d)− z̄)

)
w(d)

= g(z̄)
D∑

d=1
w(d) + g ′(z̄)

( D∑
d=1

(
z(d)− z̄

)
w(d)

)
.

The Jensen inequality then follows from the definitions of z̄ and g(z). �
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Sample Estimators of the Growth Rate Mean

Proof of Fact 3. Let f ∈ Ω+. Then the points {r(d , f)}Dd=1 all lie within
an interval [a, b] ⊂ (−1,∞). Because log(1 + r) is a concave function of r
over (−1,∞), the Jensen inequality (2.9) and definition (2.8) of µ̂(f) yield

γ̂(f) =
D∑

d=1
w(d) log

(
1 + r(d , f)

)
≤ log

(
1 +

D∑
d=1

w(d) r(d , f)
)

= log
(
1 + µ̂(f)

)
.

This establishes the upper bound (2.7), whereby Fact 3 is proved. �
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Sample Estimators of the Growth Rate Mean

Remark. The Jensen inequality can yield other useful bounds. For
example, if we take g(z) = zp for some p > 1, so that g(z) is convex over
[0,∞), and we take z(d) = w(d) for every d then because the points
{w(d)}Dd=1 all lie within [0, 1], the Jensen inequality yields

w̄p =
( D∑

d=1
w(d)2

)p

≤
D∑

d=1
w(d)p+1 = wp .

Remark. Under very mild assumptions on the return history {r(d)}Dd=1
that are always satisfied in practice we can strengthen Fact 2 to

γ̂(f) is strictly concave over Ω+ ,

and can strengthen bound (2.7) of Fact 3 to the strict inequality

γ̂(f) < log
(
1 + µ̂(f)

)
when f 6= 0 . (2.10)
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Portfolios without Risk-Free Assets
Now we specialize to solvent Markowitz portfolios without risk-free assets.
The associated allocations f belong to

Ω =
{
f ∈ Ω+ : 1Tf = 1

}
. (3.11)

On this set the growth rate mean sample estimator (2.6) reduces to

γ̂(f) =
D∑

d=1
w(d) log

(
1 + r(d)Tf

)
. (3.12)

This is an infinitely differentiable function over Ω+ with

∇f γ̂(f) =
D∑

d=1
w(d) r(d)

1 + r(d)Tf ,

∇2
f γ̂(f) = −

D∑
d=1

w(d) r(d) r(d)T
(1 + r(d)Tf)2 .

(3.13)
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Portfolios without Risk-Free Assets

The Hessian matrix ∇2
f γ̂(f) has the following properties.

Fact 4. ∇2
f γ̂(f) is nonpositive definite for every f ∈ Ω.

Fact 5. ∇2
f γ̂(f) is negative definite for every f ∈ Ω if and only if the

vectors {r(d)}Dd=1 span RN .

Remark. Fact 4 implies that γ̂(f) is concave over Ω, which was already
proven in Fact 2. Fact 5 implies that γ̂(f) is strictly concave over Ω when
the vectors {r(d)}Dd=1 span RN , which is always the case in practice.

Proof of Fact 4. Let f ∈ Ω. Then for every y ∈ RN we have

yT∇2
f γ̂(f)y = −

D∑
d=1

w(d) (r(d)Ty)2

(1 + r(d)Tf)2 ≤ 0 .

Therefore ∇2
f γ̂(f) is nonpositive definite, which proves Fact 4. �
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Portfolios without Risk-Free Assets

Proof of Fact 5. Let f ∈ Ω. Then by the calculation in the previous proof
we see that for every y ∈ RN

yT∇2
f γ̂(f)y = 0 ⇐⇒ r(d)Ty = 0 ∀d .

First, suppose that ∇2
f γ̂(f) is not negative definite. Then there exists an

y ∈ RN such that yT∇2
f γ̂(f)y = 0 and y 6= 0. The vectors {r(d)}Dd=1 must

then lie in the hyperplane orthogonal (normal) to y. Therefore the vectors
{r(d)}Dd=1 do not span RN .

Conversely, suppose that the vectors {r(d)}Dd=1 do not span RN . Then
there must be a nonzero vector y that is orthogonal to their span. This
means that y satisfies r(d)Ty = 0 for every d , whereby yT∇2

f γ̂(f)y = 0.
Therefore ∇2

f γ̂(f) is not negative definite.

Both directions of the characterization in Fact 5 are now proven. �
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Portfolios without Risk-Free Assets
Henceforth we will assume that the covariance matrix V is positive definite.
Recall that this is equivalent to assuming that the set {r(d)−m}Dd=1
spans RN . Because this condition implies that the set {r(d)}Dd=1 spans
RN , by Fact 5 it implies that ∇2

f γ̂(f) is negative definite for every f ∈ Ω.
Therefore the estimator γ̂(f) is a strictly concave function over Ω.
Remark. Because γ̂(f) is a strictly concave function over Ω, if it has a
maximum then it has a unique maximizer. Indeed, suppose that γ̂(f) has
maximum γ̂mx over Ω, and that f0 and f1 ∈ Ω are maximizers of γ̂(f) with
f0 6= f1. For every t ∈ (0, 1) define ft = (1− t) f0 + t f1. Then for every
t ∈ (0, 1) we have ft ∈ Ω and, by the strict concavity of γ̂(f) over Ω,

γ̂(ft) > (1− t) γ̂(f0) + t γ̂(f1)
= (1− t) γ̂mx + t γ̂mx = γ̂mx .

But this contradicts the fact that γ̂mx is the maximum of γ̂(f) over Ω.
Therefore at most one maximizer can exist.

C. David Levermore (UMD) Kelly Objectives for Markowitz Portfolios April 21, 2018



Intro Sample Estimators Without Risk-Free Mean-Variance Estimators With Risk-Free

Portfolios without Risk-Free Assets

Recall that Ω+ is the intersection of the half spaces

1 + r(d)Tf > 0 , for d = 1, · · · , D ,

and that Ω is the intersection of Ω+ with the hyperplane 1Tf = 1.

For many return histories {r(d)}Dd=1 the set Ω is bounded. In that case we
will have 1 + r(d)Tf ↘ 0 for at least one d as f approaches the boundary
of Ω. But then we will have log(1 + r(d)Tf)→ −∞ for at least one d as f
approaches the boundary of Ω. Hence, when Ω is bounded we will have
γ̂(f)→ −∞ as f approaches the boundary of Ω. Because γ̂(f) is
continuous over Ω and goes to −∞ as f approaches the boundary of Ω,
when Ω is bounded γ̂(f) has a maximizer in Ω. Because γ̂(f) is strictly
concave over Ω, this maximizer is unique.

C. David Levermore (UMD) Kelly Objectives for Markowitz Portfolios April 21, 2018



Intro Sample Estimators Without Risk-Free Mean-Variance Estimators With Risk-Free

Mean-Variance Estimators of the Growth Rate Mean

The maximizer of γ̂(f) over Ω can be found numerically by methods that
are typically covered in graduate courses. Rather than seek the maximizer
of γ̂(f) over Ω, we will replace the estimator γ̂(f) with a new estimator for
which finding the maximizer is easier. The hope is that the maximizer of
γ̂(f) and the maximizer of the new estimator will be close.

This strategy rests upon the fact that γ̂(f) is itself an approximation. The
uncertainties associated with it will translate into uncertainities about its
maximizer. The hope is that the difference between the maximizer of γ̂(f)
and that of the new estimator will be within these uncertainties.
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Mean-Variance Estimators of the Growth Rate Mean

We will now derive some so-called mean-variance estimators for the growth
rate mean γ(f) of a Markowitz portfolio with allocation f, each of which
will have the form

γ̂(f) = G
(
µ̂(f), ξ̂(f)

)
,

where G(µ, ξ) is some function, µ̂(f) is the sample estimator of the return
mean, and ξ̂(f) sample estimator of the return variance.

Remark. The fact that γ̂(f) is a function of µ̂(f) and ξ̂(f) will mean that
its maximizer can be found easily by using the efficient frontiers that we
computed earlier.

For simplicity we will stay in the setting of solvent Markowitz portfolios
without risk-free assets. In that case µ̂(f) and ξ̂(f) are given by

µ̂(f) = mTf , ξ̂(f) = fTVf .
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Mean-Variance Estimators of the Growth Rate Mean
A stratagy introduced by Markowitz in his 1959 book is to estimate γ̂(f)
by using the second-order Taylor approximation of log(1 + r) for small r .
This approximation is

log(1 + r) ≈ r − 1
2 r2 . (4.14)

When this approximation is used in (3.12) we obtain the quadratic
estimator of the growth rate mean

γ̂q(f) =
D∑

d=1
w(d)

(
r(d)Tf − 1

2(r(d)Tf)2)

=
( D∑

d=1
w(d) r(d)

)T

f − 1
2 fT

( D∑
d=1

w(d) r(d) r(d)T
)

f

= mTf − 1
2 fT
(
mmT + V

)
f .

(4.15)
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Mean-Variance Estimators of the Growth Rate Mean
The second and third-order and Taylor approximation to log(1 + r).

r log(1 + r) r − 1
2 r2 r − 1

2 r2 + 1
3 r3

−.5 −.69315 −.62500 −.66667
−.4 −.51083 −.48000 −.50133
−.3 −.35667 −.34500 −.35400
−.2 −.22314 −.22000 −.22267
−.1 −.10536 −.10500 −.10533
.0 .00000 .00000 .00000
.1 .09531 .09500 .09533
.2 .18232 .18000 .18267
.3 .26236 .25500 .26400
.4 .33647 .32000 .34133
.5 .40547 .37500 .41667
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Mean-Variance Estimators of the Growth Rate Mean

The table on the previous slide shows that the second-order Taylor
approximation to log(1 + r) is pretty good when |r | < .25 and that it is
not too bad when .25 < |r | < .5. It is bad when |r | ≥ .5.

Remark. This observation suggests that the quadratic estimator γ̂q(f)
given by (4.15) might only be trusted when the class of portfolio
allocations being considered lies within Ω[.75,1.25]. Such a restriction is
usually satisfied by Λ, the set of long allocations, but is often not satisfied
by highly leveraged portfolios. This is why good leveraged investors do not
use the quadratic estimator.
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Mean-Variance Estimators of the Growth Rate Mean
The quadratic estimator (4.15) can be expressed as

γ̂q(f) = mTf − 1
2
(
mTf

)2 − 1
2 fTVf . (4.16)

We obtained this estimator twice earlier using the moment and cumulant
generating functions.
Because it is often the case that(

mTf
)2 is much smaller than fTVf ,

it is tempting to drop the (mTf)2 term in (4.16). This leads to the
parabolic estimator of the growth rate mean

γ̂p(f) = mTf − 1
2 fTVf . (4.17)

Remark. While this estimator is commonly used, there are many times
when it is not good. It is particularly bad in a bubble. We will see that
using it can lead to overbetting at times when overbetting is very risky.
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Mean-Variance Estimators of the Growth Rate Mean
We can also estimate γ̂(f) by the mean-centered second-order Taylor
approximation of log(1 + r) for r = r(d)Tf near µ̂(f) = mTf. That
approximation is

log(1 + r) ≈ log
(
1 + mTf

)
+ (r(d)−m)Tf

1 + mTf − 1
2

(
(r(d)−m)Tf

)2
(1 + mTf)2 .

When this approximation is used in (3.12) we obtain the estimator

γ̂m(f) = log
(
1 + mTf

)
− 1

2
fTVf

(1 + mTf)2 , (4.18)

which is defined over the half-space

Hm =
{
f ∈ RN : 1 + mTf > 0

}
. (4.19)

This half-space contains Ω, the set of allocations for solvent Markowitz
portfolios without risk-free assets.
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Mean-Variance Estimators of the Growth Rate Mean

Remark. We obtained the estimator (4.18) earlier using the cumulant
generating function. It satisfies the upper bound (2.7) from Fact 3.
However, it is not concave and it does not generally have a maximum.
This makes it a poor replacement for γ̂(f) as an objective function.

We now introduce an estimator with better properties that uses the first
term from the mean-centered estimator (4.18) and the volatility term from
the quadratic estimator (4.16). This leads to the reasonable estimator of
the growth rate mean

γ̂r(f) = log
(
1 + mTf

)
− 1

2 fTVf , (4.20)

which is also defined over the half-space Hr = Hm given by (4.19). This
estimator is strictly concave and satisfies the upper bound (2.7) from Fact
3 over Hr.
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Mean-Variance Estimators of the Growth Rate Mean

Another growth rate mean estimator with good properties can be obtained
by a different modification of (4.18) — namely, the sensible estimator

γ̂s(f) = log
(
1 + mTf

)
− 1

2
fTVf

1 + 2mTf , (4.21)

which is defined on the half-space

Hs =
{
f ∈ RN : 0 < 1 + 2mTf

}
. (4.22)

This half-space is smaller than the half-space Hr given by (4.19) over
which the reasonable estimator (4.20) was defined.

The estimator γ̂s(f) clearly satisfies the upper bound (2.7) from Fact 3 for
every f ∈ Hs. Moreover, we have the following.

Fact 6. γ̂s(f) is strictly concave over the half-space Hs.
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Mean-Variance Estimators of the Growth Rate Mean
Proof of Fact 6. We will show that γ̂s(f) is the sum of two functions,
one of which is concave and the other of which is strictly concave over Hs.
The function log

(
1 + mTf

)
is infinitely differentiable over Hs with

∇f log
(
1 + mTf

)
= m

1 + mTf ,

∇2
f log

(
1 + mTf

)
= − m mT

(1 + mTf)2 .

Because its Hessian is nonpositive definite, the function log
(
1 + mTf

)
is

concave over Hs. The harder part of the proof of Fact 6 is to show that

− 1
2

fTVf
1 + 2mTf is strictly concave over Hs . (4.23)

This will be shown using the next two facts, which we will state and prove
before finishing the proof of Fact 6.
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Mean-Variance Estimators of the Growth Rate Mean

Fact 7. Let b, x ∈ RN such that 1 + bTx > 0. Then I + x bT is invertible
with (

I + x bT)−1 = I− x bT

1 + bTx . (4.24)

Proof of Fact 7. Just check that

(
I + x bT)(I− x bT

1 + bTx

)
=
(
I + x bT)− (I + x bT)x bT

1 + bTx

= I + x bT − x bT + x bTx bT

1 + bTx

= I + x bT − 1 + bTx
1 + bTx x bT = I .

The assertions of Fact 7 then follow. �
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Fact 8. Let A ∈ RN×N be symmetric and positive definite. Let b ∈ RN .
Let X be the half-space given by

X =
{
x ∈ RN : 1 + bTx > 0

}
.

Then
φ(x) = 1

2
xTAx

1 + bTx is strictly convex over X .

Proof of Fact 8. The function φ(x) is infinitely differentiable over X with

∇x φ(x) = Ax
1 + bTx −

1
2

xTAx b
(1 + bTx)2 ,

∇2
x φ(x) = A

1 + bTx −
Ax bT + b xTA

(1 + bTx)2 + xTAx b bT

(1 + bTx)3 .
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Then using (4.24) of Fact 7 the Hessian can be expressed as

∇2
x φ(x) =

(
I− b xT

1 + bTx

)
A

1 + bTx

(
I− x bT

1 + bTx

)

=
(
I + x bT

)−T A
1 + bTx

(
I + x bT

)−1
.

Because A is positive definite and 1 + bTx > 0 for every x ∈ X , this shows
that ∇2

x φ(x) is positive definite for every x ∈ X . Therefore φ(x) is strictly
convex over X , thereby proving Fact 8. �

By setting A = V and b = 2m in Fact 8 and using the fact that the
negative of a strictly convex function is strictly concave, we establish
(4.23), thereby completing the proof of Fact 6. �
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Finally, we identify a class of solvent Markowitz portfolios whose
allocations lie within Hs.

Fact 9. Ω 1
2

=
{
f ∈ Ω : 1

2 ≤ 1 + r(d)Tf ∀d
}
⊂ Hs.

Proof. Because Ω 1
2

=
{
f ∈ Ω : 0 ≤ 1 + 2r(d)Tf ∀d

}
, it is clear that

0 ≤ 1 + 2mTf for every f ∈ Ω 1
2

with equality if only if 0 = 1 + 2r(d)Tf for
every d . But this implies that (r(d)−m)Tf = 0 for every d , which implies
that {r(d)−m}Dd=1 does not span RN , which contradicts the assumption
that V is positive definite. Hence, for every f ∈ Ω 1

2
we have 0 < 1 + 2mTf,

which implies that f ∈ Hs by definition (4.22). Therefore Ω 1
2
⊂ Hs. �

Remark. This class excludes portfolios that would have dropped 50% in
value during a single trading day over the history considered. This seems
like a reasonable constraint for any long-term investor.
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We now extend the estimators derived in the last section to solvent
Markowitz portfolios with risk-free assets. Specifically, we will use the
sample estimator γ̂(f) to derive new estimators of γ(f) in terms of sample
estimators of the return mean and variance given by

µ̂(f) = µrf(f)
(
1− 1Tf

)
+ mTf , fTVf , (5.25)

where m and V are given by

m =
D∑

d=1
w(d)r(d) ,

V =
D∑

d=1
w(d)

(
r(d)−m

)(
r(d)−m

)T
.

(5.26)

These new return mean-variance estimators of γ(f) will allow us to work
within the framework of Markowitz portfolio theory.
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We observe that µ̂(f) is the sample mean of of the history {r(d , f)}Dd=1
and that

r(d , f)− µ̂(f) = r̃(d)Tf ,

where r̃(d) = r(d)−m. In words, r̃(d) is the deviation of r(d) from its
sample mean m. Then we can write

log
(
1 + r(d , f)

)
= log

(
1 + µ̂(f)

)
+ r̃(d)Tf

1 + µ̂(f)

−
(

r̃(d)Tf
1 + µ̂(f) − log

(
1 + r̃(d)Tf

1 + µ̂(f)

))
.

(5.27)

Notice that the last term on the first line has sample mean zero while the
concavity of the function r 7→ log(1 + r) implies that r − log(1 + r) ≥ 0,
which implies that the term on the second line is nonpositive.
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Therefore by taking the sample mean of (5.27) we obtain

γ̂(f) =
D∑

d=1
w(d) log

(
1 + r(d , f)

)
= log

(
1 + µ̂(f)

)
−

D∑
d=1

w(d)
(

r̃(d)Tf
1 + µ̂(f) − log

(
1 + r̃(d)Tf

1 + µ̂(f)

))
.

(5.28)

The last sum will be positive whenever f 6= 0 and V is positive definite.

Remark. By dropping the last term in the foregoing calculation we get an
alternative proof of Fact 3, which was proved earlier using the Jensen
inequality. Indeed, (5.28) can be viewed as an improvement upon Fact 3.
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We can estimate γ̂(f) using the second-order Taylor approximation of
log(1 + r) for small r . This approximation is

log(1 + r) ≈ r − 1
2 r2 . (5.29)

When this approximation is used inside the sum of (5.28) we obtain

γ̂(f) ≈ log
(
1 + µ̂(f)

)
− 1

2

D∑
d=1

w(d)
( r̃(d)Tf

1 + µ̂(f)

)2
.

This leads to the mean-centered estimator

γ̂s(f) = log
(
1 + µ̂(f)

)
− 1

2
fTVf

(1 + µ̂(f))2 . (5.30)

This estimator satisfies Fact 1 and the bound (2.7) from Fact 3.
However, it is not concave and it does not generally have a maximum.
This makes it a poor replacement for γ̂(f) as an objective function.
However, the following better ones derive from it.
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The analog of the sensible estimator (4.21) is

γ̂s(f) = log
(
1 + µ̂(f)

)
− 1

2
fTVf

1 + 2µ̂(f) over 1 + 2µ̂(f) > 0 . (5.31)

The analog of the reasonable estimator (4.20) is

γ̂r(f) = log
(
1 + µ̂(f)

)
− 1

2 fTVf over 1 + µ̂(f) > 0 . (5.32)

The analog of the quadratic estimator (4.16) is

γ̂q(f) = µ̂(f)− 1
2 µ̂(f)2 − 1

2 fTVf over µ̂(f) < 1 . (5.33)

The analog of the parabolic estimator (4.17) is

γ̂p(f) = µ̂(f)− 1
2 fTVf . (5.34)

It can be shown that each of these estimators is strictly concave and has a
global maximum over its domain. The sensible and reasonable estimators,
(5.31) and (5.32), satisfy Fact 1 and bound (2.7) from Fact 3.
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The derivations of these estimators each assume that |µ̂(f)| � 1.

The sensible estimator (5.31) derives from the mean-centered estimator
(5.30) by dropping the µ̂(f)2 term from the denominator
(1 + µ̂(f))2 = 1 + 2µ̂(f) + µ̂(f)2 under fTVf.

The reasonable estimator (5.32) derives from the sensible estimator (5.31)
by dropping the 2µ̂(f) term from the denominator under fTVf.

The quadratic estimator (5.33) derives from the reasonable estimator
(5.32) by replacing log(1 + µ̂(f)) with the second-order Taylor
approximation µ̂(f)− 1

2 µ̂(f)2. The result is an increasing function of µ̂(f)
when µ̂(f) < 1.

The parabolic estimator (5.34) derives from the quadratic estimator (5.32)
by also assuming that µ̂(f)2 � fTVf and dropping the µ̂(f)2 term.
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