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Introduction

The idea now is to treat the Markowitz portfolio associated with f as a
single risky asset that can be modeled by the IID process associated with
the growth rate probability density pf(X ) given by

pf(X ) = qf
(

eX − 1
)

eX .

The mean γ and variance θ of X are given by

γ =
∫

X pf(X ) dX , θ =
∫

(X − γ)2pf(X ) dX .

We know from our study of one risky asset that γ is a good proxy for
reward, while

√
θ is a good proxy for risk. Therefore we would like to

estimate γ and θ in terms of the estimators µ̂ and ξ̂ that we studied earlier.
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Moment and Cumulant Generating Functions
Estimators for γ and θ will be constructed from the positive function

M(τ) = Ex
(

eτX
)

=
∫

eτX pf(X ) dX .

We will assume M(τ) is defined for every τ in an open interval (τmn, τmx)
that contains the interval [0, 2]. It can then be shown that M(τ) is
infinitely differentiable over (τmn, τmx) with

M(m)(τ) = Ex
(

X m eτX
)

=
∫

X m eτX pf(X ) dX .

We call M(τ) the moment generating function for X because, by setting
τ = 0 in the above expression, we see that the moments {Ex(X m)}∞m=1
are generated from M(τ) by the formula

Ex
(
X m) =

∫
X mpf(X ) dX = M(m)(0) .

C. David Levermore (UMD) Growth Rate Mean and Variance Estimators April 2, 2018



Intro Generating Functions Moment GFs Cumulant GFs Interpolation Errors Sample Uncertainties Uncertainties

Moment and Cumulant Generating Functions
A related inifinitely differentiable function over (τmn, τmx) is

K (τ) = log(M(τ)) = log
(
Ex
(

eτX
))

.

We call K (τ) the cumulant generating function because the cumulants
{κm}∞m=1 of X are generated by the formula κm = K (m)(0). We see that

K ′(τ) =
Ex
(
X eτX )

Ex
(
eτX ) ,

K ′′(τ) =
Ex
(
(X − K ′(τ))2eτX )

Ex
(
eτX ) ,

K ′′′(τ) =
Ex
(
(X − K ′(τ))3eτX )

Ex
(
eτX ) ,

K ′′′′(τ) =
Ex
(
(X − K ′(τ))4eτX )

Ex
(
eτX ) − 3K ′′(τ)2 .
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Moment and Cumulant Generating Functions
By evaluating these at τ = 0 we see that the first four cumulants of X are

κ1 = K ′(0) = Ex(X ) = γ ,

κ2 = K ′′(0) = Ex
(
(X − γ)2) = θ ,

κ3 = K ′′′(0) = Ex
(
(X − γ)3) ,

κ4 = K ′′′′(0) = Ex
(
(X − γ)4)− 3θ2 .

These are respectively the mean, variance, skewness, and kurtosis.

Skewness measures an asymmetry in the tails of the distribution. It is
positive or negative depending on whether the fatter tail is to the right or
to the left respectively.

Kurtosis measures a balance between the tails and the center of the
distribution. It is larger for distributions with greater weight in the tails
than in the center.
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Moment and Cumulant Generating Functions

Remark. The formulas

K ′(τ) =
Ex
(
X eτX )

Ex
(
eτX ) ,

K ′′(τ) =
Ex
(
(X − K ′(τ))2eτX )

Ex
(
eτX ) ,

K ′′′(τ) =
Ex
(
(X − K ′(τ))3eτX )

Ex
(
eτX ) ,

K ′′′′(τ) =
Ex
(
(X − K ′(τ))4eτX )

Ex
(
eτX ) − 3K ′′(τ)2 ,

show that K ′(τ), K ′′(τ), K ′′′(τ), and K ′′′′(τ) are the mean, variance,
skewness, and kurtosis for the probability density eτX pf(X )/Ex(eτX ).
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Moment and Cumulant Generating Functions
Remark. If X is normally distributed with mean γ and variance θ then

pf(X ) = 1√
2πθ

exp
(
−(X − γ)2

2θ

)
.

A direct calculation then shows that

Ex
(

eτX
)

= 1√
2πθ

∫
exp
(
−(X − γ)2

2θ + τX
)

dX

= 1√
2πθ

∫
exp
(
−(X − γ − τθ)2

2θ + τγ + 1
2τ

2θ

)
dX

= exp
(
τγ + 1

2τ
2θ
)
,

whereby K (τ) = log(Ex(eτX )) = τγ + 1
2τ

2θ. Hence, when X is normally
distributed the skewness, kurtosis, and all higher-order cumulants vanish.
Conversely, if all of these cumulants vanish then X is normally distributed.
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Moment and Cumulant Generating Functions
Remark. The cumulant generating function K (τ) is strictly convex over
the interval (τmn, τmx) because K ′′(τ) > 0.
Remark. We can also see that K (τ) is convex over (τmn, τmx) as follows.
Let τ0, τ1 ∈ (τmn, τmx). By applying the Hölder inequality with p = 1

1−s
and p∗ = 1

s , we see that for every s ∈ (0, 1) we have

M
(
(1− s)τ0 + sτ1)

)
=
∫

e(1−s)τ0X esτ1X pf(X ) dX

≤
(∫

eτ0X pf(X ) dX
)1−s (∫

eτ1X pf(X ) dX
)s

= M(τ0)1−sM(τ1)s .

By taking the logarithm of this inequality we obtain
K ((1− s)τ0 + sτ1) ≤ (1− s)K (τ0) + sK (τ1) for every s ∈ (0, 1) .

Therefore K (τ) is a convex function over (τmn, τmx).
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Estimators from Moment Generating Functions
We will now construct estimators for γ and θ by using the moment
generating function

M(τ) = Ex
(

eτX
)
.

Because R = eX − 1 and Ex(eX ) = M(1), we have

µ = Ex(R) = M(1)− 1 .

Because R − µ = eX −M(1) and Ex(e2X ) = M(2), we have

ξ = Ex
(

(R − µ)2
)

= M(2)−M(1)2 .

These equations can be solved for M(1) and M(2) as

M(1) = 1 + µ , M(2) = (1 + µ)2 + ξ .

Therefore knowing µ and ξ is equivalent to knowing M(1) and M(2).
C. David Levermore (UMD) Growth Rate Mean and Variance Estimators April 2, 2018



Intro Generating Functions Moment GFs Cumulant GFs Interpolation Errors Sample Uncertainties Uncertainties

Estimators from Moment Generating Functions
Because Ex(X ) = M ′(0) and Ex(X 2) = M ′′(0), we see that

γ = Ex(X ) = M ′(0) ,
θ = Ex

(
(X − γ)2)

= Ex
(
X 2)− γ2 = M ′′(0)−M ′(0)2 .

Because M(0) = 1, we construct an estimator of M(τ) by interpolating
the values M(0), M(1), and M(2) with a quadratic polynomial as

M̂(τ) = 1 + τ
(
M(1)− 1

)
+ τ(τ − 1)1

2
(
M(2)− 2M(1) + 1

)
= 1 + τµ+ 1

2τ(τ − 1)
(
µ2 + ξ

)
.

By direct calculation we see that

M̂ ′(0) = µ− 1
2(µ2 + ξ) , M̂ ′′(0) = µ2 + ξ .
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Estimators from Moment Generating Functions

The idea is to now construct estimators for γ and θ by using

M̂ ′(0) = µ− 1
2(µ2 + ξ) , M̂ ′′(0) = µ2 + ξ , (3.1)

as estimators for M ′(0) and M ′′(0) in the formulas

γ = M ′(0) , θ = M ′′(0)−M ′(0)2 .

We thereby construct estimators γ̂ and θ̂ as functions of µ and ξ by

γ̂ = M̂ ′(0) = µ− 1
2(µ2 + ξ) ,

θ̂ = M̂ ′′(0)− M̂ ′(0)2 = µ2 + ξ −
(
µ− 1

2(µ2 + ξ)
)2
.
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Estimators from Moment Generating Functions

By replacing the µ and ξ that appear in the foregoing estimators with the
estimators

µ̂ = µrf(1− 1Tf) + mTf , ξ̂ = 1
1− w̄ fTVf . (3.2a)

we obtain the estimators

γ̂ = µ̂− 1
2

(
µ̂2 + ξ̂

)
,

θ̂ = µ̂2 + ξ̂ −
(
µ̂− 1

2

(
µ̂2 + ξ̂

))2
,

(3.2b)

The variance θ is generally positive, but the estimator θ̂ given above is not
intrinsically positive.
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Estimators from Moment Generating Functions
Expanding the above expression for θ̂ in powers of µ̂ and ξ̂ yields

θ̂ = ξ̂ + µ̂
(
µ̂2 + ξ̂

)
− 1

4

(
µ̂2 + ξ̂

)2
.

The only term in this expansion that is intrinsically positive is the first one.
Therefore we make the smallness assumptions

|µ̂| � 1 , ξ̂ � 1 , |µ̂|3 � ξ ,

and keep only through quadratic statistics — i.e. through quadratic in µ̂
and linear in ξ̂. We thereby arrive at the quadratic estimators

γ̂ = µ̂− 1
2

(
µ̂2 + ξ̂

)
, θ̂ = ξ̂ , (3.3)

where µ̂ and ξ̂ are given by (3.2a).
Remark. These smallness assumptions are very easy to check.
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Estimators from Moment Generating Functions

Remark. The quadratic estimators γ̂ and θ̂ given by (3.3) have at least
three potential sources of error:

the estimators M̂ ′(0) and M̂ ′′(0) used in (3.1) to approximate γ and θ
as functions of µ and ξ,
the estimators µ̂ and ξ̂ used in (3.2a) to approximate µ and ξ,
the smallness assumptions that lead to (3.3).

The derivation of the first estimators assumes that the returns for each
Markowitz portfolio are described by a density qf(R) that is narrow enough
for some moment beyond the second to exist. All of these approximations
should be examined carefully, especially when markets are highly volatile.
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Estimators from Cumulant Generating Functions
We will now give an alternative derivation of quadratic estimators (3.3)
that uses the cumulent generating function K (τ) = log(M(τ)) and is based
on the fact that γ = K ′(0) and θ = K ′′(0). It begins by observing that

K (1) = log
(
M(1)

)
= log(1 + µ) ,

K (2) = log
(
M(2)

)
= log

(
(1 + µ)2 + ξ

)
.

Therefore knowing µ and ξ is equivalent to knowing K (1) and K (2).

Because K (0) = 0, we construct an estimator of K (τ) by interpolating the
values K (0), K (1), and K (2) with a quadratic polynomial as

K̂ (τ) = τK (1) + τ(τ − 1)1
2
(
K (2)− 2K (1)

)
= τ log(1 + µ) + τ(τ − 1)1

2 log
(

1 + ξ

(1 + µ)2

)
.
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Estimators from Cumulant Generating Functions
This yields the estimators

γ̂ = K̂ ′(0) = log(1 + µ)− 1
2 log

(
1 + ξ

(1 + µ)2

)
,

θ̂ = K̂ ′′(0) = log
(

1 + ξ

(1 + µ)2

)
.

By replacing the µ and ξ that appear above with the estimators µ̂ and ξ̂
given by (3.2a), we obtain the new estimators

γ̂ = log(1 + µ̂)− 1
2 log

(
1 + ξ̂

(1 + µ̂)2

)
,

θ̂ = log
(

1 + ξ̂

(1 + µ̂)2

)
.

So long as 1 + µ̂ > 0 these estimators are well defined and θ̂ is positive.
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Estimators from Cumulant Generating Functions
If 1 + µ̂ > 0 and we make the smallness assumption

ξ̂

(1 + µ̂)2 � 1 ,

then we obtain the estimators

γ̂ = log(1 + µ̂)− 1
2

ξ̂

(1 + µ̂)2 , θ̂ = ξ̂

(1 + µ̂)2 . (4.4)

Finally, if we make the additional smallness assumptions

|µ̂| � 1 , |µ̂|3 � ξ̂ ,

use the fact
log(1 + µ̂) = µ̂− 1

2 µ̂
2 + 1

3 µ̂
3 + · · · ,

and keep only through quadratic statistics then we obtain the quadratic
estimators (3.3) derived earlier.
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Estimators from Cumulant Generating Functions

Remark. The fact that both derivations lead to the same estimators gives
us greater confidence in the validity the quadratic estimators.

Remark. If the Markowitz portfolio specified by f has growth rates X that
are normally distributed with mean γ and variance θ then we have seen
that K (τ) = τγ + 1

2τ
2θ. In this case we have K̂ (τ) = K (τ), so the

estimators γ̂ = K̂ ′(0) and θ̂ = K̂ ′′(0) are exact.

Remark. The biggest uncertainty associated with these estimators for γ̂
and θ̂ is usually the uncertainty inherited from the estimators for µ̂ and ξ̂.
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Estimators from Cumulant Generating Functions
Exercise. When the quadratic estimators γ̂ and θ̂ are applied to a single
risky asset, they reduce to

γ̂ = µ̂− 1
2
(
µ̂2 + ξ̂

)
, θ̂ = ξ̂ .

Use these to estimate γ and θ for each of the following assets given the
share price history {s(d)}Dd=0. How do these γ̂ and θ̂ compare with the
unbiased estimators for γ and θ that you obtained in the previous problem?

(a) Google, Microsoft, Exxon-Mobil, UPS, GE, and Ford stock in 2009;
(b) Google, Microsoft, Exxon-Mobil, UPS, GE, and Ford stock in 2007;
(c) S&P 500 and Russell 1000 and 2000 index funds in 2009;
(d) S&P 500 and Russell 1000 and 2000 index funds in 2007.

Exercise. Compute γ̂ and θ̂ based on daily data for the Markowitz
portfolio with value equally distributed among the assets in each of the
groups given in the previous exercise.
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Interpolation Errors
Here we examine the errors of the interpolation-based estimators given by

M̂ ′(0) = 2
(
M(1)− 1

)
− 1

2
(
M(2)− 1

)
,

M̂ ′′(0) = M(2)− 2M(1) + 1 .

Let M(τ) be any thrice continuously differentiable function over [0, 2] that
satisfies M(0) = 1. The Cauchy form of the Taylor remainder then yields

M(1) = 1 + M ′(0) + 1
2M ′′(0) + 1

2

∫ 1

0
(1− s)2M ′′′(s) ds ,

M(2) = 1 + 2M ′(0) + 2M ′′(0) + 1
2

∫ 2

0
(2− s)2M ′′′(s) ds .

By placing these into the above formulas for M̂ ′(0) and M̂ ′′(0) we obtain

M̂ ′(0) = M ′(0) + E1 , M̂ ′′(0) = M ′′(0) + E2 ,
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Interpolation Errors
where the errors E1 and E2 are given by

E1 =
[ ∫ 1

0
(1− s)2M ′′′(s) ds − 1

4

∫ 2

0
(2− s)2M ′′′(s) ds

]
= −

[ ∫ 1

0

(
s − 3

4s2)M ′′′(s) ds + 1
4

∫ 2

1
(2− s)2M ′′′(s) ds

]
,

E2 =
[

1
2

∫ 2

0
(2− s)2M ′′′(s) ds −

∫ 1

0
(1− s)2M ′′′(s) ds

]
=
[

1
2

∫ 2

1
(2− s)2M ′′′(s) ds +

∫ 1

0

(
1− 1

2s2)M ′′′(s) ds
]
.

Here the integrals seen in the second expression for each error are written
so that the factor multiplying M ′′′(s) inside each integral is nonnegative.
This shows that if M ′′′(s) ≥ 0 over [0, 2] then E1 < 0 and E2 > 0, while if
M ′′′(s) ≤ 0 over [0, 2] then E1 > 0 and E2 < 0.
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Interpolation Errors

The errors E1 and E2 may be bounded in terms of

‖M ′′′‖∞ = max
{
|M ′′′(τ)| : τ ∈ [0, 2]

}
.

Specifically, because∫ 1

0

(
s − 3

4s2) ds = 1
4 ,

∫ 2

1
(2− s)2 ds = 1

3 ,∫ 1

0

(
1− 1

2s2) ds = 5
6 ,

we obtain the bounds

|E1| ≤ 1
3‖M

′′′‖∞ , |E2| ≤ ‖M ′′′‖∞ .
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Interpolation Errors

If we want to use these error bounds then we must find either a bound of
or an approximation to ‖M ′′′‖∞. From the definition of M(τ) we see that

M ′′′(τ) = Ex
(
X 3eτX ) =

∫
X 3eτX pf(X ) dX .

Because

M ′′′′(τ) = Ex
(
X 4eτX ) =

∫
X 4eτX pf(X ) dX > 0 ,

we see that M ′′′(τ) is a strictly increasing function of τ .
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Interpolation Errors

Because M ′′′(τ) is a strictly increasing function of τ we have

‖M ′′′‖∞ = max
{
−M ′′′(0) , M ′′′(2)

}
,

where the quantities M ′′′(0) and M ′′′(2) can be expressed in terms of the
return density as

M ′′′(0) =
∫ ∞
−1

(
log(1 + R)

)3 qf(R) dR ,

M ′′′(2) =
∫ ∞
−1

(
log(1 + R)

)3(1 + R)2qf(R) dR .
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Interpolation Errors
These quantities can be approximated by the sample means

M̃ ′′′(0) =
D∑

d=1
w(d)

(
log
(
1 + r(d)

))3
,

M̃ ′′′(2) =
D∑

d=1
w(d)

(
log
(
1 + r(d)

))3 (1 + r(d)
)2
,

where {r(d)}Dd=1 is the portfolio return history given by

r(d) =
(
1− 1Tf

)
µrf + fTr(d) .

By arguing as we did for M ′′′(τ), we can show that M̃ ′′′(0) < M̃ ′′′(2).
Therefore we can approximate ‖M ′′′‖∞ by

‖M ′′′‖∞ ≈ max
{
− M̃ ′′′(0) , M̃ ′′′(2)

}
.
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Sample Uncertainties

We now turn our attention to the errors associated with the sample return
mean and variance unbiased estimators

µ̂ =
D∑

d=1
w(d)R(d) , ξ̂ =

D∑
d=1

w(d)
1− w̄

(
R(d)− µ̂

)2
.

Eariler we estimated how close µ̂ is to µ by computing its variance. We
found that

Var(µ̂) = Ex
(

(µ̂− µ)2
)

= w̄ ξ , where w̄ =
D∑

d=1
w(d)2 .

This showed that µ̂ converges to µ like
√

w̄ as w̄ → 0.
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Sample Uncertainties

Remark. The Cauchy inequality implies that

1 =
( D∑

d=1
1 · w(d)

)2

≤
( D∑

d=1
12
)( D∑

d=1
w(d)2

)
= D w̄ .

This shows that for any weighting we have w̄ ≥ 1/D. Therefore the
variance is smallest for uniform weights when we have w(d) = 1/D.

Remark. For uniform weights the formula for Var(µ̂) reduces to

Var(µ̂) = 1
D ξ .

Therefore µ̂ converges to µ like 1/
√

D as D →∞ for uniform weights.
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Sample Uncertainties
The above considerations suggest that the uncertainties associated with
the unbiased estimator µ̂ can be measured by(

w̄ ξ̂
) 1

2 .

We can also estimate how close ξ̂ is to ξ by computing its variance. To do
this we will assume that the probability density qf(R) has a finite fourth
moment. Let ξ4 be the centered fourth moment, which is given by

ξ4 = Ex
(

(R − µ)4
)

=
∫ ∞
−D

(R − µ)4qf(R) dR <∞ .

Observe that by the strict Cauchy inequality we have

ξ4 =
∫ ∞
−D

(R − µ)4qf(R) dR >

(∫ ∞
−D

(R − µ)2qf(R) dR
)2

= ξ2 .
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The first step is to let R̃(d) = R(d)− µ and express ξ̂ as

ξ̂ = 1
1− w̄

( D∑
d=1

w(d)R̃(d)2 − (µ̂− µ)2
)

= 1
1− w̄

 D∑
d=1

w(d)R̃(d)2 −
D∑

d1=1

D∑
d2=1

w(d1)w(d2)R̃(d1)R̃(d2)

 .
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By squaring this expression and relabeling some indices we obtain

ξ̂2 =
D∑

d=1

D∑
d ′=1

w(d)w(d ′)
(1− w̄)2 R̃(d)2R̃(d ′)2

− 2
D∑

d=1

D∑
d1=1

D∑
d2=1

w(d)w(d1)w(d2)
(1− w̄)2 R̃(d)2R̃(d1)R̃(d2)

+
D∑

d1=1

D∑
d2=1

D∑
d3=1

D∑
d4=1

(w(d1)w(d2)w(d3)w(d4)
(1− w̄)2

· R̃(d1)R̃(d2)R̃(d3)R̃(d4)
)
.
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The next step is to compute Ex
(
ξ̂2
)

, which requires us to compute

Ex
(

R̃(d)2R̃(d ′)2
)
, Ex

(
R̃(d)2R̃(d1)R̃(d2)

)
,

Ex
(

R̃(d1)R̃(d2)R̃(d3)R̃(d4)
)
.

Let δdd ′ denote the Kronecker delta, which is defined by

δdd ′ =
{

1 if d = d ′ ,
0 if d 6= d ′ .
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Because R̃(d) and R̃(d ′) are independent when d 6= d ′, and because
Ex
(

R̃(d)
)

= 0, Ex
(

R̃(d)2
)

= ξ, and Ex
(

R̃(d)4
)

= ξ4, we see that

Ex
(

R̃(d)2R̃(d ′)2
)

= δdd ′ ξ4 +
(
1− δdd ′

)
ξ2 ,

Ex
(

R̃(d)2R̃(d1)R̃(d2)
)

= δd1d2

(
δdd1 ξ4 + (1− δdd1) ξ2

)
,

Ex
(

R̃(d1)R̃(d2)R̃(d3)R̃(d4)
)

= δd1d2 δd2d3 δd3d4 ξ4

+ δd1d2 δd3d4 (1− δd1d3) ξ2

+ δd1d3 δd4d2 (1− δd1d4) ξ2

+ δd1d4 δd2d3 (1− δd1d2) ξ2 .
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Then the expected value of the quantity ξ̂2 given three slides back is

Ex
(
ξ̂2
)

= w̄ − 2w2 + w3

(1− w̄)2 ξ4 + 1− 3w̄ + 2w2 + 3w̄2 − 3w3

(1− w̄)2 ξ2 ,

where w̄ , w2, and w3 are given by

w̄ =
D∑

d=1
w(d)2 , w2 =

D∑
d=1

w(d)3 , w3 =
D∑

d=1
w(d)4 .
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Sample Uncertainties

Therefore the variance of ξ̂ is

Var
(
ξ̂
)

= Ex
(

(ξ̂ − ξ)2
)

= Ex
(
ξ̂2
)
− ξ2

= w̄ − 2w2 + w3

(1− w̄)2 ξ4 + −w̄ + 2w2 + 2w̄2 − 3w3

(1− w̄)2 ξ2

= w̄ − 2w2 + w3

(1− w̄)2
(
ξ4 − ξ2)+ 2 w̄2 − w3

(1− w̄)2 ξ
2 .
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Sample Uncertainties
Remark. For uniform weights this formula for Var(ξ̂) reduces to

Var
(
ξ̂
)

= 1
D
(
ξ4 − ξ2)+ 2

D(D − 1) ξ
2 .

Therefore ξ̂ converges to ξ like 1/
√

D as D →∞ for uniform weights.
The coefficient in front of (ξ4 − ξ2) above is the smallest possible because,
by the Cauchy inequality, the general coefficient of (ξ4 − ξ2) satisfies

w̄ − 2w2 + w3

(1− w̄)2 = 1
(1− w̄)2

D∑
d=1

(
1− w(d)

)2w(d)2

≥ 1
(1− w̄)2

1
D

( D∑
d=1

(
1− w(d)

)
w(d)

)2

= 1
(1− w̄)2

1
D (1− w̄)2 = 1

D .
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Sample Uncertainties

In order to treat cases when the weights are not uniform it is useful to
derive an upper bound for Var

(
ξ̂
)

in which the coefficients of (ξ4 − ξ2)
and ξ2 depend on w̄ but not on w2 and w3.

Because the Jensen inequality implies that w̄3 ≤ w3, the coefficient of ξ2

can be bounded as

w̄2 − w3

(1− w̄)2 ≤
w̄2 − w̄3

(1− w̄)2 = w̄2

1− w̄ .
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The coefficient of (ξ4 − ξ2) requires more work. It can be checked that
f (z) = z − 2z2 + z3 is concave over [0, 2

3 ]. Hence, when the weights
{w(d)}Dd=1 all lie in [0, 2

3 ] the Jensen inequality with z(d) = w(d) yields

w − 2w2 + w3 = f (w) ≤ f (w̄) = w̄ − 2w̄2 + w̄3 .

In that case the coefficient of (ξ4 − ξ2) can be bounded as

w̄ − 2w2 + w3

(1− w̄)2 ≤ w̄ − 2w̄2 + w̄3

(1− w̄)2 = w̄ .

Therefore if every w(d) ≤ 2
3 then we obtain the upper bound

Var
(
ξ̂
)
≤ w̄

(
ξ4 − ξ2)+ 2w̄2

1− w̄ ξ2 .

This shows that ξ̂ converges to ξ like
√

w̄ as w̄ → 0 for arbitrary weights.
Moreover, the above inequality is an equality for uniform weights.

C. David Levermore (UMD) Growth Rate Mean and Variance Estimators April 2, 2018



Intro Generating Functions Moment GFs Cumulant GFs Interpolation Errors Sample Uncertainties Uncertainties

Sample Uncertainties

The foregoing considerations suggest that the uncertainties associated
with the unbiased estimator ξ̂ can be measured by(

w̄
(
ξ̂4 − ξ̂2)+ 2w̄2

1− w̄ ξ̂2
) 1

2

,

where we choose to use the (biased) estimator of ξ4 given by

ξ̂4 = 1
(1− w̄)2

D∑
d=1

w(d)
(
R(d)− µ̂

)4
.
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Comparing Uncertainties

Recall that the quadratic estimators γ̂ and θ̂ given by (3.3) have at least
three potential sources of error:

the estimators M̂ ′(0) and M̂ ′′(0) used in (3.1) to approximate γ and θ
as functions of µ and ξ,
the estimators µ̂ and ξ̂ used in (3.2a) to approximate µ and ξ,
the smallness assumptions that lead to (3.3).

Here we summarize how to assess these uncertainies.
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Comparing Uncertainties

First, we just saw that the uncertainties associated with approximating
M ′(0) and M ′′(0) by M̂ ′(0) and M̂ ′′(0) can be measured respectively by

1
3 max

{
− M̃ ′′′(0) , M̃ ′′′(2)

}
, max

{
− M̃ ′′′(0) , M̃ ′′′(2)

}
,

where M̃ ′′′(0) and M̃ ′′′(2) are given by the sample means

M̃ ′′′(0) =
D∑

d=1
w(d)

(
log
(
1 + r(d)

))3
,

M̃ ′′′(2) =
D∑

d=1
w(d)

(
log
(
1 + r(d)

))3 (1 + r(d)
)2
.
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Comparing Uncertainties

Second, earlier we saw that the uncertainties associated with
approximating µ and ξ by µ̂ and ξ̂ can be measured respectively by

(
w̄ ξ̂
) 1

2 ,

(
w̄
(
ξ̂4 − ξ̂2

)
+ 2w̄2

1− w̄ ξ̂2
) 1

2

,

where the estimator ξ̂4 is given by

ξ̂4 = 1
(1− w̄)2

Dh∑
d=1

w(d)
(
r(d)− µ̂

)4
.
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Comparing Uncertainties

Finally, the uncertainties associated with the smallness assumptions can be
measured by

|µ̂| , |µ̂|3

ξ̂
, ξ̂ .

While it is unclear which of these uncertainty measures will dominate for a
given Markowitz portfolio, some general relationships are clear.
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