Portfolios that Contain Risky Assets 8: Markowitz Frontiers for Limited Portfolios

C. David Levermore
University of Maryland, College Park, MD

Math 420: Mathematical Modeling
March 21, 2018 version
(C) 2018 Charles David Levermore

Portfolios that Contain Risky Assets Part I: Portfolio Models

1. Risk and Reward
2. Covariance Matrices
3. Markowitz Portfolios
4. Solvent Portfolios
5. Limited Portfolios
6. Markowitz Frontiers for Unlimited Portfolios
7. Markowitz Frontiers for Long Portfolios
8. Markowitz Frontiers for Limited Portfolios
9. Unlimited Portfolios with Risk-Free Assets
10. Limited Portfolios with Risk-Free Assets

Markowitz Frontiers for Limited Portfolios

(1) Limited-Leverage Constraints
(2) Limited-Leverage Frontiers
(3) Quadratic Programming

4 Computing Limited-Leverage Frontiers
(5) General Portfolio with Two Risky Assets
(6) General Portfolio with Three Risky Assets

Limited-Leverage Constraints

Recall that Π_{ℓ} is the set of all limited-leverage portfolio allocations with leverage limit $\ell \geq 0$ and that $\Pi_{\ell}(\mu)$ is the set of all such allocations with return mean μ. These sets are given by

$$
\begin{aligned}
\Pi_{\ell} & =\left\{\mathbf{f} \in \mathbb{R}^{N}:\|\mathbf{f}\|_{1} \leq 1+2 \ell, \mathbf{1}^{\mathrm{T}} \mathbf{f}=1\right\}, \\
\Pi_{\ell}(\mu) & =\left\{\mathbf{f} \in \Pi_{\ell}: \mathbf{m}^{\mathrm{T}} \mathbf{f}=\mu\right\} .
\end{aligned}
$$

Clearly $\Pi_{\ell}(\mu) \subset \Pi_{\ell}$ for every $\mu \in \mathbb{R}$.
The set Π_{ℓ} is a convex polytope of dimension $N-1$ that is contained in the hyperplane $\left\{\mathbf{f} \in \mathbb{R}^{N}: \mathbf{1}^{\mathrm{T}} \mathbf{f}=1\right\}$. The set $\Pi_{\ell}(\mu)$ is the intersection of Π_{ℓ} with the hyperplane $\left\{\mathbf{f} \in \mathbb{R}^{N}: \mathbf{m}^{\mathrm{T}} \mathbf{f}=\mu\right\}$. Because we have assumed that \mathbf{m} and $\mathbf{1}$ are not proportional, the intersection of these hyperplanes is a set of dimension $N-2$. Therefore the set $\Pi_{\ell}(\mu)$ is a convex polytope of dimension at most $N-2$, but it might be empty.

Limited-Leverage Constraints

We start by charactering those μ for which $\Pi_{\ell}(\mu)$ is nonempty. Recall that

$$
\mu_{\mathrm{mn}}=\min \left\{m_{i}: i=1, \cdots, N\right\}, \quad \mu_{\mathrm{mx}}=\max \left\{m_{i}: i=1, \cdots, N\right\} .
$$

We expect that the ℓ-limited leverage portfolio with the highest mean return would have a long allocation of $1+\ell$ in an asset with mean return μ_{mx} and short allocation of $-\ell$ in an asset with mean return μ_{mn}. The mean return of such a portfolio is

$$
\mu_{\mathrm{mx}}^{\ell}=(1+\ell) \mu_{\mathrm{mx}}-\ell \mu_{\mathrm{mn}}=\mu_{\mathrm{mx}}+\ell\left(\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}\right) .
$$

Similarly, we expect that the ℓ-limited leverage portfolio with the lowest mean return would have a long allocation of $1+\ell$ in an asset with mean return μ_{mn} and short allocation of $-\ell$ in an asset with mean return μ_{mx}. The mean return of such a portfolio is

$$
\mu_{\mathrm{mn}}^{\ell}=(1+\ell) \mu_{\mathrm{mn}}-\ell \mu_{\mathrm{mx}}=\mu_{\mathrm{mn}}-\ell\left(\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}\right) .
$$

Limited-Leverage Constraints

Indeed, we will prove the following.
Fact. For every $\ell \geq 0$ the set $\Pi_{\ell}(\mu)$ is nonempty if and only if $\mu \in\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right]$, where

$$
\mu_{\mathrm{mn}}^{\ell}=\mu_{\mathrm{mn}}-\ell\left(\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}\right), \quad \mu_{\mathrm{mx}}^{\ell}=\mu_{\mathrm{mx}}+\ell\left(\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}\right) .
$$

Remark. Because we have assumed that \mathbf{m} and $\mathbf{1}$ are not proportional, the mean returns $\left\{m_{i}\right\}_{i=1}^{N}$ are not identical. This implies that $\mu_{\mathrm{mn}}<\mu_{\mathrm{mx}}$, which implies that the interval $\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right.$] does not reduce to a point. Indeed, when $\ell_{2}>\ell_{1} \geq 0$ we have

$$
\mu_{\mathrm{mn}}^{\ell_{2}}<\mu_{\mathrm{mn}}^{\ell_{1}}<\mu_{\mathrm{mx}}^{\ell_{1}}<\mu_{\mathrm{mx}}^{\ell_{2}}
$$

Limited-Leverage Constraints

Proof. Let $\Pi_{\ell}(\mu)$ be nonempty for some $\mu \in \mathbb{R}$. Let $\mathbf{f} \in \Pi_{\ell}(\mu)$ and let $\mathbf{f}=\mathbf{f}_{+}-\mathbf{f}_{-}$be the long-short decomposistion of \mathbf{f}. Because $\mu_{\mathrm{mn}} \mathbf{1} \leq \mathbf{m} \leq \mu_{\mathrm{mx}} \mathbf{1}$, and because $\mathbf{f}_{ \pm} \geq \mathbf{0}$, we have

$$
\mu_{\mathrm{mn}} \mathbf{1}^{\mathrm{T}} \mathbf{f}_{ \pm} \leq \mathbf{m}^{\mathrm{T}} \mathbf{f}_{ \pm} \leq \mu_{\mathrm{mx}} \mathbf{1}^{\mathrm{T}} \mathbf{f}_{ \pm}
$$

Because $\mathbf{1}^{\mathrm{T}} \mathbf{f}=1$ we have

$$
\mathbf{1}^{\mathrm{T}} \mathbf{f}_{+}=\mathbf{1}^{\mathrm{T}}\left(\mathbf{f}+\mathbf{f}_{-}\right)=\mathbf{1}^{\mathrm{T}} \mathbf{f}+\mathbf{1}^{\mathrm{T}} \mathbf{f}_{-}=1+\mathbf{1}^{\mathrm{T}} \mathbf{f}_{-} .
$$

Because $\mathbf{f} \in \Pi_{\ell}$ we have $\mathbf{1}^{\mathrm{T}} \mathbf{f}_{-} \leq \ell$. These facts combine to give

$$
\begin{aligned}
\mu=\mathbf{m}^{\mathrm{T}} \mathbf{f}=\mathbf{m}^{\mathrm{T}} \mathbf{f}_{+}-\mathbf{m}^{\mathrm{T}} \mathbf{f}_{-} & \leq \mu_{\mathrm{mx}} \mathbf{1}^{\mathrm{T}} \mathbf{f}_{+}-\mu_{\mathrm{mn}} \mathbf{1}^{\mathrm{T}} \mathbf{f}_{-} \\
& =\mu_{\mathrm{mx}}+\left(\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}\right) \mathbf{1}^{\mathrm{T}} \mathbf{f}_{-} \\
& \leq \mu_{\mathrm{mx}}+\ell\left(\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}\right)=\mu_{\mathrm{mx}}^{\ell}
\end{aligned}
$$

Limited-Leverage Constraints

Similarly,

$$
\begin{aligned}
\mu=\mathbf{m}^{\mathrm{T}} \mathbf{f}=\mathbf{m}^{\mathrm{T}} \mathbf{f}_{+}-\mathbf{m}^{\mathrm{T}} \mathbf{f}_{-} & \geq \mu_{\mathrm{mn}} \mathbf{1}^{\mathrm{T}} \mathbf{f}_{+}^{-} \mu_{\mathrm{mx}} \mathbf{1}^{\mathrm{T}} \mathbf{f}_{-} \\
& =\mu_{\mathrm{mn}}-\left(\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}\right) \mathbf{1}^{\mathrm{T}} \mathbf{f}_{-} \\
& \geq \mu_{\mathrm{mn}}-\ell\left(\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}\right)=\mu_{\mathrm{mn}}^{\ell} .
\end{aligned}
$$

Therefore $\mu \in\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right]$. Because $\mathbf{f} \in \Pi_{\ell}(\mu)$ was arbitrary, we conclude that if $\Pi_{\ell}(\mu)$ is nonempty then $\mu \in\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right]$.

Conversely, first choose \mathbf{e}_{mn} and \mathbf{e}_{mx} so that

$$
\begin{aligned}
& \mathbf{e}_{\mathrm{mn}}=\mathbf{e}_{i} \quad \text { for any } i \text { that satisfies } m_{i}=\mu_{\mathrm{mn}}, \\
& \mathbf{e}_{\mathrm{mx}}=\mathbf{e}_{j} \quad \text { for any } j \text { that satisfies } m_{j}=\mu_{\mathrm{mx}} .
\end{aligned}
$$

Limited-Leverage Constraints

Now let $\mu \in\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right]$ and set

$$
\mathbf{f}=\frac{\mu_{\mathrm{mx}}-\mu}{\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}} \mathbf{e}_{\mathrm{mn}}+\frac{\mu-\mu_{\mathrm{mn}}}{\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}} \mathbf{e}_{\mathrm{mx}} .
$$

Because $\mathbf{1}^{\mathrm{T}} \mathbf{e}_{\mathrm{mn}}=\mathbf{1}^{\mathrm{T}} \mathbf{e}_{\mathrm{mx}}=1, \mathbf{m}^{\mathrm{T}} \mathbf{e}_{\mathrm{mn}}=\mu_{\mathrm{mn}}$, and $\mathbf{m}^{\mathrm{T}} \mathbf{e}_{\mathrm{mx}}=\mu_{\mathrm{mx}}$, we see

$$
\begin{aligned}
\mathbf{1}^{\mathrm{T}} \mathbf{f} & =\frac{\mu_{\mathrm{mx}}-\mu}{\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}} \mathbf{1}^{\mathrm{T}} \mathbf{e}_{\mathrm{mn}}+\frac{\mu-\mu_{\mathrm{mn}}}{\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}} \mathbf{1}^{\mathrm{T}} \mathbf{e}_{\mathrm{mx}} \\
& =\frac{\mu_{\mathrm{mx}}-\mu}{\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}}+\frac{\mu-\mu_{\mathrm{mn}}}{\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}}=1 \\
\mathbf{m}^{\mathrm{T}} \mathbf{f} & =\frac{\mu_{\mathrm{mx}}-\mu}{\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}} \mathbf{m}^{\mathrm{T}} \mathbf{e}_{\mathrm{mn}}+\frac{\mu-\mu_{\mathrm{mn}}}{\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}} \mathbf{m}^{\mathrm{T}} \mathbf{e}_{\mathrm{mx}} \\
& =\frac{\mu_{\mathrm{mx}}-\mu}{\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}} \mu_{\mathrm{mn}}+\frac{\mu-\mu_{\mathrm{mn}}}{\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}} \mu_{\mathrm{mx}}=\mu
\end{aligned}
$$

Hence, $\mathbf{f} \in \Pi_{\infty}(\mu)$. We still need to show that $\mathbf{f} \in \Pi_{\ell}(\mu)$.

Limited-Leverage Constraints

Because $\mu \in\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right]$ the allocations of \mathbf{f} are bounded by

$$
\begin{aligned}
& -\ell=\frac{\mu_{\mathrm{mx}}-\mu_{\mathrm{mx}}^{\ell}}{\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}} \leq \frac{\mu_{\mathrm{mx}}-\mu}{\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}} \leq \frac{\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}^{\ell}}{\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}}=1+\ell, \\
& -\ell=\frac{\mu_{\mathrm{mn}}^{\ell}-\mu_{\mathrm{mn}}}{\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}} \leq \frac{\mu-\mu_{\mathrm{mn}}}{\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}} \leq \frac{\mu_{\mathrm{mx}}^{\ell}-\mu_{\mathrm{mn}}}{\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}}=1+\ell .
\end{aligned}
$$

Because they sum to 1 , at most one of them is negative. Hence,

$$
\mathbf{1}^{\mathrm{T}} \mathbf{f}_{-} \leq \max \left\{-\frac{\mu_{\mathrm{mx}}-\mu}{\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}},-\frac{\mu-\mu_{\mathrm{mn}}}{\mu_{\mathrm{mx}}-\mu_{\mathrm{mn}}}\right\} \leq \ell
$$

Hence, $\mathbf{f} \in \Pi_{\ell}(\mu)$. Therefore if $\mu \in\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right]$ then $\Pi_{\ell}(\mu)$ is nonempty. \square

Limited-Leverage Constraints

Remark. For every $\mu \in\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right]$ the set $\Pi_{\ell}(\mu)$ is a nonempty, closed, bounded, convex polytope of dimension at most $N-2$.

- When $N=2$ it is a point.
- When $N=3$ it is either a point or a line segment.
- When $N=4$ it is either a point, a line segment, or a convex polygon.

Limited-Leverage Frontiers

The set Π_{ℓ} in \mathbb{R}^{N} of all portfolio allocations with leverage limit ℓ is associated with the set $\Sigma\left(\Pi_{\ell}\right)$ in the $\sigma \mu$-plane of volatilities and return means given by

$$
\Sigma\left(\Pi_{\ell}\right)=\left\{(\sigma, \mu) \in \mathbb{R}^{2}: \sigma=\sqrt{\mathbf{f}^{\mathrm{T}} \mathbf{V f}}, \mu=\mathbf{m}^{\mathrm{T}} \mathbf{f}, \mathbf{f} \in \Pi_{\ell}\right\}
$$

The set $\Sigma\left(\Pi_{\ell}\right)$ is the image in \mathbb{R}^{2} of the polytope Π_{ℓ} in \mathbb{R}^{N} under the mapping $\mathbf{f} \mapsto(\sigma, \mu)$. Because the set Π_{ℓ} is compact (closed and bounded) and the mapping $\mathbf{f} \mapsto(\sigma, \mu)$ is continuous, the set $\Sigma\left(\Pi_{\ell}\right)$ is compact.

Limited-Leverage Frontiers

We have seen that the set $\Pi_{\ell}(\mu)$ of all ℓ-limited portfolio allocations with return mean μ is nonempty if and only if $\mu \in\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right]$. Hence, $\Sigma\left(\Pi_{\ell}\right)$ can be expressed as

$$
\Sigma\left(\Pi_{\ell}\right)=\left\{\left(\sqrt{\mathbf{f}^{\mathrm{T}} \mathbf{V f}}, \mu\right): \mu \in\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right], \mathbf{f} \in \Pi_{\ell}(\mu)\right\} .
$$

The points on the boundary of $\Sigma\left(\Pi_{\ell}\right)$ that correspond to those ℓ-limited portfolios that have less volatility than every other ℓ-limited portfolio with the same return mean is called the ℓ-limited frontier.

Limited-Leverage Frontiers

The ℓ-limited frontier is the curve in the $\sigma \mu$-plane given by the equation

$$
\sigma=\sigma_{\mathrm{f}}^{\ell}(\mu) \text { over } \quad \mu \in\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right],
$$

where the value of $\sigma_{\mathrm{f}}^{\ell}(\mu)$ is obtained for each $\mu \in\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right]$ by solving the constrained minimization problem

$$
\sigma_{\mathrm{f}}^{\ell}(\mu)^{2}=\min \left\{\sigma^{2}:(\sigma, \mu) \in \Sigma\left(\Pi_{\ell}\right)\right\}=\min \left\{\mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f}: \mathbf{f} \in \Pi_{\ell}(\mu)\right\}
$$

Because the function $\mathbf{f} \mapsto \mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f}$ is continuous over the compact set $\Pi_{\ell}(\mu)$, a minimizer exists.

Because \mathbf{V} is positive definite, the function $\mathbf{f} \mapsto \mathbf{f}^{\mathrm{T}} \mathbf{V f}$ is strictly convex over the convex set $\Pi_{\ell}(\mu)$, whereby the minimizer is unique.

Limited-Leverage Frontiers

If we denote this unique minimizer by $\mathbf{f}_{\mathrm{f}}^{\ell}(\mu)$ then for every $\mu \in\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right]$ the function $\sigma_{\mathrm{f}}^{\ell}(\mu)$ is given by

$$
\sigma_{\mathrm{f}}^{\ell}(\mu)=\sqrt{\mathbf{f}_{\mathrm{f}}^{\ell}(\mu)^{\mathrm{T}} \mathbf{V} \mathbf{f}_{\mathrm{f}}^{\ell}(\mu)}
$$

where $\mathbf{f}_{f}^{\ell}(\mu)$ is

$$
\mathbf{f}_{\mathrm{f}}^{\ell}(\mu)=\arg \min \left\{\frac{1}{2} \mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f}: \mathbf{f} \in \Pi_{\ell}(\mu)\right\} .
$$

Here arg min is read "the argument that minimizes". It means that $\mathbf{f}_{\mathrm{f}}^{\ell}(\mu)$ is the minimizer of the function $\mathbf{f} \mapsto \frac{1}{2} \mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f}$ subject to the given constraints. Remark. This problem cannot be solved by Lagrange multipliers because the set $\Pi_{\ell}(\mu)$ is defined by inequality constraints. It is harder to solve analytically than the analogous minimization problem for portfolios with unlimited leverage. Therefore we will first present a numerical approach that can generally be applied.

Quadratic Programming

Because the function being minimized is quadratic in \mathbf{f} while the constraints are linear in \mathbf{f}, this is called a quadratic programming problem. It can be solved for a particular \mathbf{V}, \mathbf{m}, and μ by using either the Matlab command "quadprog" or an equivalent command in some other language.

The Matlab command quadprog($\left.\mathbf{A}, \mathbf{b}, \mathbf{C}, \mathbf{d}, \mathbf{C}_{\mathrm{eq}}, \mathbf{d}_{\mathrm{eq}}\right)$ returns the solution of a quadratic programming problem in the standard form

$$
\arg \min \left\{\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}+\mathbf{b}^{\mathrm{T}} \mathbf{x}: \mathbf{x} \in \mathbb{R}^{M}, \mathbf{C} \mathbf{x} \leq \mathbf{d}, \mathbf{C}_{\mathrm{eq}} \mathbf{x}=\mathbf{d}_{\mathrm{eq}}\right\}
$$

where $\mathbf{A} \in \mathbb{R}^{M \times M}$ is nonnegative definite, $\mathbf{b} \in \mathbb{R}^{M}, \mathbf{C} \in \mathbb{R}^{K \times M}, \mathbf{d} \in \mathbb{R}^{K}$, $\mathbf{C}_{\mathrm{eq}} \in \mathbb{R}^{K_{\mathrm{eq}} \times M}$, and $\mathbf{d}_{\text {eq }} \in \mathbb{R}^{K_{\text {eq }}}$. Here K and $K_{\text {eq }}$ are the number of inequality and equality constraints respectively.

Quadratic Programming

Given \mathbf{V}, \mathbf{m}, and $\mu \in\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right]$, the problem that we want to solve to obtain $\mathbf{f}_{\mathrm{f}}^{\ell}(\mu)$ is

$$
\arg \min \left\{\frac{1}{2} \mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f}: \mathbf{f} \in \mathbb{R}^{N},\|\mathbf{f}\|_{1} \leq 1+2 \ell, \mathbf{1}^{\mathrm{T}} \mathbf{f}=1, \mathbf{m}^{\mathrm{T}} \mathbf{f}=\mu\right\}
$$

By comparing this with the standard quadratic programming problem on the previous slide we see that if we set $\mathbf{x}=\mathbf{f}$ then $M=N, K_{\text {eq }}=2$, and

$$
\mathbf{A}=\mathbf{V}, \quad \mathbf{b}=\mathbf{0}, \quad \mathbf{C}_{\mathrm{eq}}=\binom{\mathbf{1}^{\mathrm{T}}}{\mathbf{m}^{\mathrm{T}}}, \quad \mathbf{d}_{\mathrm{eq}}=\binom{1}{\mu} .
$$

However, it is not as clear how to express the inequality constraint $\|\mathbf{f}\|_{1} \leq 1+2 \ell$ in the standard form $\mathbf{C f} \leq \mathbf{d}$.

Quadratic Programming

The inequality $\|\mathbf{f}\|_{1} \leq 1+2 \ell$ can be expressed as the inequality constraints

$$
\pm f_{1} \pm f_{2} \pm \cdots \pm f_{N-1} \pm f_{N} \leq 1+2 \ell
$$

where there are 2^{N} choices of \pm signs. When the \pm are chosen to be the same sign then the inequality constraint is always satisfied because of the the equality constraint $\mathbf{1}^{\mathrm{T}} \mathbf{f}=1$. That leaves $2^{N}-2$ inequality constraints that still need to be imposed.

The number $2^{N}-2$ grows too fast with N for this approach to be useful for all but small values of N. For example, when $N=9$ we have $2^{N}-2=510$. With this many inequality constraints quadprog could suffer numerical difficulties. This raises the following question.

Are all of these $2^{N}-2$ inequality constraints needed?

Quadratic Programming

The answer is yes if we insist on setting $\mathbf{x}=\mathbf{f}$. However, the answer is no if we enlarge the dimension of \mathbf{x}.

To understand why the answer is yes if we insist on setting $\mathbf{x}=\mathbf{f}$, consider any of these inequality constraints written along with the equality constraint $\mathbf{1}^{\mathrm{T}} \mathbf{f}=1$ as

$$
\begin{aligned}
\pm f_{1} & \pm f_{2} \pm \cdots \pm f_{N-1} \pm f_{N} \leq 1+2 \ell \\
f_{1} & +f_{2}+\cdots+f_{N-1}+f_{N}=1
\end{aligned}
$$

By adding these and dividing by 2 we obtain

$$
\sum_{i \in S} f_{i} \leq 1+\ell
$$

where S is the subset of indices i with a plus in the inequality constraint.

Quadratic Programming

For every $S \subset\{1,2, \cdots, N\}$ define the $i^{\text {th }}$ entry of $\mathbf{1}_{S} \in \mathbb{R}^{N}$ by

$$
\operatorname{ent}_{i}\left(\mathbf{1}_{S}\right)= \begin{cases}1 & \text { if } i \in S, \\ 0 & \text { if } i \notin S .\end{cases}
$$

Then the $2^{N}-2$ inequality conatraints can be expressed as

$$
\mathbf{1}_{S}^{\mathrm{T}} \mathbf{f} \leq 1+\ell \quad \text { for every nonempty, proper } S \subset\{1,2, \cdots, N\} .
$$

The equality constraint $\mathbf{1}^{\mathrm{T}} \mathbf{f}=1$ can be used to show that these $2^{N}-2$ inequality conatraints can also be expressed as

$$
-\ell \leq \mathbf{1}_{S}^{\mathrm{T}} \mathbf{f} \quad \text { for every nonempty, proper } S \subset\{1,2, \cdots, N\} .
$$

Quadratic Programming

To understand why the answer is no if we enlarge the dimension of \mathbf{x}, consider the following equivalences.

$$
\begin{aligned}
\Pi_{\ell} & =\left\{\mathbf{f} \in \mathbb{R}^{N}: \mathbf{1}^{\mathrm{T}} \mathbf{f}=1, \mathbf{s} \in \mathbb{R}^{N}, \mathbf{s} \geq \mathbf{0},(\mathbf{f}+\mathbf{s}) \geq \mathbf{0}, \mathbf{1}^{\mathrm{T}} \mathbf{s} \leq \ell\right\} \\
& =\left\{\mathbf{f} \in \mathbb{R}^{N}: \mathbf{1}^{\mathrm{T}} \mathbf{f}=1, \mathbf{g} \in \mathbb{R}^{N},(\mathbf{g} \pm \mathbf{f}) \geq \mathbf{0}, \mathbf{1}^{\mathrm{T}} \mathbf{g} \leq 1+2 \ell\right\} .
\end{aligned}
$$

The two sets on the right-hand side above are equal by the relations

$$
\mathbf{s}=\frac{1}{2}(\mathbf{g}-\mathbf{f}), \quad \mathbf{g}=\mathbf{f}+2 \mathbf{s} .
$$

We must show that they are also equal to Π_{ℓ}. This is left as an exercise.

Quadratic Programming

If we use the first equivalence then the problem that we want to solve to obtain $\mathbf{f}_{\mathrm{f}}^{\ell}(\mu)$ is

$$
\arg \min \left\{\frac{1}{2} \mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f}: \mathbf{s} \geq \mathbf{0},(\mathbf{f}+\mathbf{s}) \geq \mathbf{0}, \mathbf{1}^{\mathrm{T}} \mathbf{s} \leq \ell, \mathbf{1}^{\mathrm{T}} \mathbf{f}=1, \mathbf{m}^{\mathrm{T}} \mathbf{f}=\mu\right\}
$$

By comparing this with the standard quadratic programming problem we see that if we set $\mathbf{x}=(\mathbf{f} \mathbf{s})^{T}$ then $M=2 N, K=2 N+1, K_{\text {eq }}=2$, and

$$
\begin{gathered}
\mathbf{A}=\left(\begin{array}{ll}
\mathbf{v} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right), \quad \mathbf{b}=\binom{\mathbf{0}}{\mathbf{0}}, \\
\mathbf{C}=\left(\begin{array}{cc}
-\mathbf{l} & -\mathbf{I} \\
\mathbf{0} & -\mathbf{I} \\
\mathbf{0}^{\mathrm{T}} & \mathbf{1}^{\mathrm{T}}
\end{array}\right), \quad \mathbf{d}=\left(\begin{array}{l}
\mathbf{0} \\
\mathbf{0} \\
\ell
\end{array}\right), \quad \mathbf{C}_{\mathrm{eq}}=\left(\begin{array}{cc}
\mathbf{1}^{\mathrm{T}} & \mathbf{0}^{\mathrm{T}} \\
\mathbf{m}^{\mathrm{T}} & \mathbf{0}^{\mathrm{T}}
\end{array}\right), \quad \mathbf{d}_{\mathrm{eq}}=\binom{1}{\mu},
\end{gathered}
$$

where \mathbf{O} and \mathbf{I} are the $N \times N$ zero and identity matrices.

Quadratic Programming

If we use the second equivalence then the problem that we want to solve to obtain $\mathbf{f}_{\mathrm{f}}^{\ell}(\mu)$ is

$$
\arg \min \left\{\frac{1}{2} \mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f}:(\mathbf{g} \pm \mathbf{f}) \geq \mathbf{0}, \mathbf{1}^{\mathrm{T}} \mathbf{g} \leq 1+2 \ell, \mathbf{1}^{\mathrm{T}} \mathbf{f}=1, \mathbf{m}^{\mathrm{T}} \mathbf{f}=\mu\right\}
$$

By comparing this with the standard quadratic programming problem we see that if we set $\mathbf{x}=(\mathbf{f} \mathbf{g})^{T}$ then $M=2 N, K=2 N+1, K_{\text {eq }}=2$, and

$$
\begin{gathered}
\mathbf{A}=\left(\begin{array}{cc}
\mathbf{v} & \mathbf{0} \\
\mathbf{O} & \mathbf{O}
\end{array}\right), \quad \mathbf{b}=\binom{\mathbf{0}}{\mathbf{0}}, \\
\mathbf{C}=\left(\begin{array}{cc}
-\mathbf{I} & -\mathbf{I} \\
\mathbf{l} & -\mathbf{I} \\
\mathbf{0}^{\mathrm{T}} & \mathbf{1}^{\mathrm{T}}
\end{array}\right), \quad \mathbf{d}=\left(\begin{array}{c}
\mathbf{0} \\
\mathbf{0} \\
1+2 \ell
\end{array}\right), \quad \mathbf{C}_{\mathrm{eq}}=\left(\begin{array}{cc}
\mathbf{1}^{\mathrm{T}} & \mathbf{0}^{\mathrm{T}} \\
\mathbf{m}^{\mathrm{T}} & \mathbf{0}^{\mathrm{T}}
\end{array}\right), \quad \mathbf{d}_{\mathrm{eq}}=\binom{1}{\mu},
\end{gathered}
$$

where \mathbf{O} and \mathbf{I} are the $N \times N$ zero and identity matrices.

Quadratic Programming

In either case $\mathbf{f}_{\mathrm{f}}^{\ell}(\mu)$ can be obtained as the first N entries of the output x of a quadprog command that is formated as

$$
\mathrm{x}=\text { quadprog }(\mathrm{A}, \mathrm{~b}, \mathrm{C}, \mathrm{~d}, \mathrm{Ceq}, \mathrm{deq}),
$$

where the matrices A, C, and Ceq, and the vectors b, d, and deq are given on the previous slides.

Remark. By doubling the dimension of the vector \mathbf{x} from N to $2 N$ we have reduced the number of inequality constraints from $2^{N}-2$ to $2 N+1$. When $N=9$ this is a reduction from 510 to 19 !

Remark. There are other ways to use quadprog to obtain $\mathbf{f}_{\mathrm{f}}^{\ell}(\mu)$. Documentation for this command is easy to find on the web.

Computing Limited-Leverage Frontiers

When computing an ℓ-limited frontier, it helps to know some general properties of the function $\sigma_{\mathrm{f}}^{\ell}(\mu)$. These include:

- $\sigma_{\mathrm{f}}^{\ell}(\mu)$ is continuous over $\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right]$;
- $\sigma_{\mathrm{f}}^{\ell}(\mu)$ is strictly convex over $\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right]$;
- $\sigma_{\mathrm{f}}^{\ell}(\mu)$ is piecewise hyperbolic over $\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right]$.

This means that $\sigma_{\mathrm{f}}^{\ell}(\mu)$ is built up from segments of hyperbolas that are connected at a finite number of nodes that correspond to points in the interval $\left(\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right)$ where $\sigma_{\mathrm{f}}^{\ell}(\mu)$ has either a jump discontinuity in its first derivative or a jump discontinuity in its second derivative.

Guided by these facts we now show how an ℓ-limited frontier can be approximated numerically with the Matlab command quadprog.

Computing Limited-Leverage Frontiers

First, partition the interval $\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right.$] as

$$
\mu_{\mathrm{mn}}^{\ell}=\mu_{0}<\mu_{1}<\cdots<\mu_{n-1}<\mu_{n}=\mu_{\mathrm{mx}}^{\ell}
$$

For example, set $\mu_{k}=\mu_{\mathrm{mn}}^{\ell}+k\left(\mu_{\mathrm{mx}}^{\ell}-\mu_{\mathrm{mn}}^{\ell}\right) / n$ for a uniform partition. Pick n large enough to resolve all the features of the ℓ-limited frontier.
There should be at most one node in each subinterval $\left[\mu_{k-1}, \mu_{k}\right]$.
Second, for every $k=0, \cdots, n$ use quadprog to compute $\mathbf{f}_{\mathrm{f}}^{\ell}\left(\mu_{k}\right)$. (This computation will not be exact, but we will speak as if it is.) The allocations $\left\{\mathbf{f}_{\mathrm{f}}^{\ell}\left(\mu_{k}\right)\right\}_{k=0}^{n}$ should be saved.

Third, for every $k=0, \cdots, n$ compute σ_{k} by

$$
\sigma_{k}=\sigma_{\mathrm{f}}^{\ell}\left(\mu_{k}\right)=\sqrt{\mathbf{f}_{\mathrm{f}}^{\ell}\left(\mu_{k}\right)^{\mathrm{T}} \mathbf{V} \mathbf{f}_{\mathrm{f}}^{\ell}\left(\mu_{k}\right)} .
$$

Computing Limited-Leverage Frontiers

Remark. There is typically a unique m_{i} such that $\mu_{\mathrm{mn}}^{\ell}=m_{i}$, in which case we have

$$
\mathbf{f}_{\mathrm{f}}^{\ell}\left(\mu_{0}\right)=\mathbf{e}_{i}, \quad \sigma_{0}=\sqrt{v_{i i}} .
$$

Similarly, there is typically a unique m_{j} such that $\mu_{\mathrm{mx}}^{\ell}=m_{j}$, in which case we have

$$
\mathbf{f}_{\mathrm{f}}^{\ell}\left(\mu_{n}\right)=\mathbf{e}_{j}, \quad \sigma_{n}=\sqrt{v_{j j}} .
$$

Finally, we "connect the dots" between the points $\left\{\left(\sigma_{k}, \mu_{k}\right)\right\}_{k=0}^{n}$ to build an approximation to the ℓ-limited frontier in the $\sigma \mu$-plane. This can be done by linear interpolation. Specifically, for every $\mu \in\left(\mu_{k-1}, \mu_{k}\right)$ we set

$$
\tilde{\sigma}_{\mathrm{f}}^{\ell}(\mu)=\frac{\mu_{k}-\mu}{\mu_{k}-\mu_{k-1}} \sigma_{k-1}+\frac{\mu-\mu_{k-1}}{\mu_{k}-\mu_{k-1}} \sigma_{k}
$$

Computing Limited-Leverage Frontiers

A better way to "connect the dots" between the points $\left\{\left(\sigma_{k}, \mu_{k}\right)\right\}_{k=0}^{n}$ is motivated by the two-fund property. Specifically, for every $\mu \in\left(\mu_{k-1}, \mu_{k}\right)$ we set

$$
\tilde{\mathbf{f}}_{\mathrm{f}}^{\ell}(\mu)=\frac{\mu_{k}-\mu}{\mu_{k}-\mu_{k-1}} \mathbf{f}_{\mathrm{f}}^{\ell}\left(\mu_{k-1}\right)+\frac{\mu-\mu_{k-1}}{\mu_{k}-\mu_{k-1}} \mathbf{f}_{\mathrm{f}}^{\ell}\left(\mu_{k}\right),
$$

and then set

$$
\tilde{\sigma}_{\mathrm{f}}^{\ell}(\mu)=\sqrt{\tilde{\mathbf{f}}_{\mathrm{f}}^{\ell}(\mu)^{\mathrm{T}} \mathbf{V} \tilde{\mathbf{f}}_{\mathrm{f}}^{\ell}(\mu)} .
$$

Remark. This will be a very good approximation if n is large enough. Over each interval $\left(\mu_{k-1}, \mu_{k}\right)$ it approximates $\sigma_{f}^{\ell}(\mu)$ with a hyperbola rather than with a line.

Computing Limited-Leverage Frontiers

Remark. Because $\mathbf{f}_{\mathbf{f}}^{\ell}\left(\mu_{k}\right) \in \Pi_{\ell}\left(\mu_{k}\right)$ and $\mathbf{f}_{\mathrm{f}}^{\ell}\left(\mu_{k-1}\right) \in \Pi_{\ell}\left(\mu_{k-1}\right)$, we can show that

$$
\tilde{\mathbf{f}}_{\mathrm{f}}^{\ell}(\mu) \in \Pi_{\ell}(\mu) \quad \text { for every } \mu \in\left(\mu_{k-1}, \mu_{k}\right) .
$$

Therefore $\tilde{\sigma}_{\mathrm{f}}^{\ell}(\mu)$ gives an approximation to the ℓ-limited frontier that lies on or to the right of the ℓ-limited frontier in the $\sigma \mu$-plane.

Remark. When there are no nodes in the interval $\left(\mu_{k-1}, \mu_{k}\right)$ then we can use the two-fund property to show that $\tilde{\sigma}_{\mathrm{f}}^{\ell}(\mu)=\sigma_{\mathrm{f}}^{\ell}(\mu)$.

General Portfolio with Two Risky Assets

Recall the portfolio of two risky assets with mean vector \mathbf{m} and covarience matrix \mathbf{V} given by

$$
\mathbf{m}=\binom{m_{1}}{m_{2}}, \quad \mathbf{V}=\left(\begin{array}{ll}
v_{11} & v_{12} \\
v_{12} & v_{22}
\end{array}\right)
$$

Without loss of generality we can assume that $m_{1}<m_{2}$. Then $\mu_{\mathrm{mn}}=m_{1}$, $\mu_{\mathrm{mx}}=m_{2}$ and

$$
\mu_{\mathrm{mn}}^{\ell}=m_{1}-\ell\left(m_{2}-m_{1}\right), \quad \mu_{\mathrm{mn}}^{\ell}=m_{2}+\ell\left(m_{2}-m_{1}\right) .
$$

Recall that for every $\mu \in \mathbb{R}$ the unique portfolio allocation that satisfies the constraints $\mathbf{1}^{\mathrm{T}} \mathbf{f}=1$ and $\mathbf{m}^{\mathrm{T}} \mathbf{f}=\mu$ is

$$
\mathbf{f}=\mathbf{f}(\mu)=\frac{1}{m_{2}-m_{1}}\binom{m_{2}-\mu}{\mu-m_{1}}
$$

Clearly $\mathbf{f}(\mu) \in \Pi_{\ell}$ if and only if $\mu \in\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right]$.

General Portfolio with Two Risky Assets

Therefore the set $\Pi_{\ell}(\mu)$ is given by

$$
\Pi_{\ell}=\left\{\mathbf{f}(\mu): \mu \in\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right]\right\} .
$$

In other words, the set Π_{ℓ} is the line segment in \mathbb{R}^{2} that is the image of the interval $\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right.$] under the affine mapping $\mu \mapsto \mathbf{f}(\mu)$.
Because for every $\mu \in\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right]$ the set $\Pi_{\ell}(\mu)$ consists of the single portfolio $\mathbf{f}(\mu)$, the minimizer of $\mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f}$ over $\Pi_{\ell}(\mu)$ is $\mathbf{f}(\mu)$. Therefore the ℓ-limited frontier portfolios are

$$
\mathbf{f}_{\mathrm{f}}^{\ell}(\mu)=\mathbf{f}(\mu) \quad \text { for } \mu \in\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right]
$$

and the ℓ-limited frontier is given by

$$
\sigma=\sigma_{\mathrm{f}}^{\ell}(\mu)=\sqrt{\mathbf{f}(\mu)^{\mathrm{T}} \mathbf{V} \mathbf{f}(\mu)} \quad \text { for } \mu \in\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right] .
$$

Hence, the ℓ-limited frontier is simply a segment of the frontier hyperbola. It has no nodes.

General Portfolio with Three Risky Assets

Recall the portfolio of three risky assets with mean vector \mathbf{m} and covarience matrix \mathbf{V} given by

$$
\mathbf{m}=\left(\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right), \quad \mathbf{V}=\left(\begin{array}{lll}
v_{11} & v_{12} & v_{13} \\
v_{12} & v_{22} & v_{23} \\
v_{13} & v_{23} & v_{33}
\end{array}\right)
$$

Without loss of generality we can assume that

$$
m_{1} \leq m_{2} \leq m_{3}, \quad m_{1}<m_{3} .
$$

Then $\mu_{\mathrm{mn}}=m_{1}, \mu_{\mathrm{mx}}=m_{3}$ and

$$
\mu_{\mathrm{mn}}^{\ell}=m_{1}-\ell\left(m_{3}-m_{1}\right), \quad \mu_{\mathrm{mn}}^{\ell}=m_{3}+\ell\left(m_{3}-m_{1}\right) .
$$

General Portfolio with Three Risky Assets

Recall that for every $\mu \in \mathbb{R}$ the portfolios that satisfies the constraints $\mathbf{1}^{\mathrm{T}} \mathbf{f}=1$ and $\mathbf{m}^{\mathrm{T}} \mathbf{f}=\mu$ are

$$
\mathbf{f}=\mathbf{f}(\mu, \phi)=\mathbf{f}_{13}(\mu)+\phi \mathbf{n}, \quad \text { for some } \phi \in \mathbb{R}
$$

where

$$
\mathbf{f}_{13}(\mu)=\frac{1}{m_{3}-m_{1}}\left(\begin{array}{c}
m_{3}-\mu \\
0 \\
\mu-m_{1}
\end{array}\right), \quad \mathbf{n}=\frac{1}{m_{3}-m_{1}}\left(\begin{array}{l}
m_{2}-m_{3} \\
m_{3}-m_{1} \\
m_{1}-m_{2}
\end{array}\right)
$$

It can be shown that $\mathbf{f}(\mu, \phi) \in \Pi_{\ell}$ if and only if $\mu \in\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right]$, $\phi \in[-\ell, 1+\ell]$, and

$$
\begin{aligned}
& -\ell \leq \frac{m_{3}-\mu}{m_{3}-m_{1}}-\phi \frac{m_{3}-m_{2}}{m_{3}-m_{1}} \leq 1+\ell \\
& -\ell \leq \frac{\mu-m_{1}}{m_{3}-m_{1}}-\phi \frac{m_{2}-m_{1}}{m_{3}-m_{1}} \leq 1+\ell
\end{aligned}
$$

General Portfolio with Three Risky Assets

This region can be expressed as

$$
\phi_{\mathrm{mn}}^{\ell}(\mu) \leq \phi \leq \phi_{\mathrm{mx}}^{\ell}(\mu),
$$

where

$$
\begin{aligned}
& \phi_{\mathrm{mn}}^{\ell}(\mu)=-\min \left\{\frac{\mu-\mu_{\mathrm{mn}}^{\ell}}{m_{3}-m_{2}}, \ell, \frac{\mu_{\mathrm{mx}}^{\ell}-\mu}{m_{2}-m_{1}}\right\} \\
& \phi_{\mathrm{mx}}^{\ell}(\mu)=\min \left\{\frac{\mu-\mu_{\mathrm{mn}}^{\ell}}{m_{2}-m_{1}}, 1+\ell, \frac{\mu_{\mathrm{mx}}^{\ell}-\mu}{m_{3}-m_{2}}\right\} .
\end{aligned}
$$

When $\ell>0$ it is the hexagon \mathcal{H}_{ℓ} in the $\mu \phi$-plane whose vertices are the six distinct points

$$
\begin{array}{lll}
\left(\mu_{\mathrm{mn}}^{\ell}, 0\right), & \left(m_{1}-\ell\left(m_{2}-m_{1}\right),-\ell\right), & \left(m_{2}-\ell\left(m_{3}-m_{2}\right), 1+\ell\right), \\
\left(\mu_{\mathrm{mx}}^{\ell}, 0\right), & \left(m_{3}+\ell\left(m_{3}-m_{2}\right),-\ell\right), & \left(m_{2}+\ell\left(m_{2}-m_{1}\right), 1+\ell\right) .
\end{array}
$$

General Portfolio with Three Risky Assets

Therefore the set Π_{ℓ} is given by

$$
\Pi_{\ell}=\left\{\mathbf{f}(\mu, \phi):(\mu, \phi) \in \mathcal{H}_{\ell}\right\} .
$$

In other words, the set Π_{ℓ} is the hexagon in \mathbb{R}^{3} that is the image of the hexagon \mathcal{H}_{ℓ} under the affine mapping $(\mu, \phi) \mapsto \mathbf{f}(\mu, \phi)$.

Because for every $\mu \in\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right]$ the set $\Pi_{\ell}(\mu)$ is the intersection of the hexagon Π_{ℓ} with the plane $\left\{\mathbf{f} \in \mathbb{R}^{3}: \mathbf{m}^{\mathrm{T}} \mathbf{f}=\mu\right\}$. This is a line segment that might be a single point. It is given by

$$
\Pi_{\ell}(\mu)=\left\{\mathbf{f}(\mu, \phi): \phi_{\mathrm{mn}}^{\ell}(\mu) \leq \phi \leq \phi_{\mathrm{mx}}^{\ell}(\mu)\right\} .
$$

In other words, the line segment $\Pi_{\ell}(\mu)$ in \mathbb{R}^{3} is the image of the interval $\left[\phi_{\mathrm{mn}}^{\ell}(\mu), \phi_{\mathrm{mx}}^{\ell}(\mu)\right]$ under the affine mapping $\phi \mapsto \mathbf{f}(\mu, \phi)$.

General Portfolio with Three Risky Assets

Hence, the point on the ℓ-limited frontier associated with $\mu \in\left[\mu_{\mathrm{mn}}^{\ell}, \mu_{\mathrm{mx}}^{\ell}\right]$ is $\left(\sigma_{\mathrm{f}}^{\ell}(\mu), \mu\right)$ where $\sigma_{\mathrm{f}}^{\ell}(\mu)$ solves the constrained minimization problem

$$
\begin{aligned}
\sigma_{\mathrm{f}}^{\ell}(\mu)^{2} & =\min \left\{\mathbf{f}^{\mathrm{T}} \mathbf{V} \mathbf{f}: \mathbf{f} \in \Pi_{\ell}(\mu)\right\} \\
& =\min \left\{\mathbf{f}(\mu, \phi)^{\mathrm{T}} \mathbf{V} \mathbf{f}(\mu, \phi): \phi_{\mathrm{mn}}^{\ell}(\mu) \leq \phi \leq \phi_{\mathrm{mx}}^{\ell}(\mu)\right\}
\end{aligned}
$$

Because the objective function

$$
\mathbf{f}(\mu, \phi)^{\mathrm{T}} \mathbf{V} \mathbf{f}(\mu, \phi)=\mathbf{f}_{13}(\mu)^{\mathrm{T}} \mathbf{V} \mathbf{f}_{13}(\mu)+2 \phi \mathbf{n}^{\mathrm{T}} \mathbf{V} \mathbf{f}_{13}(\mu)+\phi^{2} \mathbf{n}^{\mathrm{T}} \mathbf{V}
$$

is a quadratic in ϕ, we see that it has a unique global minimizer at

$$
\phi=\phi_{\mathrm{f}}(\mu)=-\frac{\mathbf{n}^{\mathrm{T}} \mathbf{V} \mathbf{f}_{13}(\mu)}{\mathbf{n}^{\mathrm{T}} \mathbf{V} \mathbf{n}} .
$$

This global minimizer corresponds to the frontier. It will be the minimizer of our constrained minimization problem for the ℓ-limited frontier if and only if $\phi_{\mathrm{mn}}^{\ell} \leq \phi_{\mathrm{f}}(\mu) \leq \phi_{\mathrm{mx}}^{\ell}(\mu)$.

General Portfolio with Three Risky Assets

If $\phi_{\mathrm{f}}(\mu)<\phi_{\mathrm{mn}}^{\ell}(\mu)$ then the objective function is increasing over [$\phi_{\mathrm{mn}}^{\ell}(\mu), \phi_{\mathrm{mx}}^{\ell}(\mu)$], whereby its minimizer is $\phi=\phi_{\mathrm{mn}}^{\ell}(\mu)$.

If $\phi_{\mathrm{mx}}^{\ell}(\mu)<\phi_{\mathrm{f}}(\mu)$ then the objective function is decreasing over [$\phi_{\mathrm{mn}}^{\ell}(\mu), \phi_{\mathrm{mx}}^{\ell}(\mu)$], whereby its minimizer is $\phi=\phi_{\mathrm{mx}}^{\ell}(\mu)$.
Hence, the minimizer $\phi_{\mathrm{f}}^{\ell}(\mu)$ of our constrained minimization problem is

$$
\begin{aligned}
\phi_{\mathrm{f}}^{\ell}(\mu) & = \begin{cases}\phi_{\mathrm{mn}}^{\ell}(\mu) & \text { if } \phi_{\mathrm{f}}(\mu)<\phi_{\mathrm{mn}}^{\ell}(\mu) \\
\phi_{\mathrm{f}}(\mu) & \text { if } \phi_{\mathrm{mn}}^{\ell}(\mu) \leq \phi_{\mathrm{f}}(\mu) \leq \phi_{\mathrm{mx}}^{\ell}(\mu) \\
\phi_{\mathrm{mx}}^{\ell}(\mu) & \text { if } \phi_{\mathrm{mx}}^{\ell}(\mu)<\phi_{\mathrm{f}}(\mu)\end{cases} \\
& =\max \left\{\phi_{\mathrm{mn}}^{\ell}(\mu), \min \left\{\phi_{\mathrm{f}}(\mu), \phi_{\mathrm{mx}}^{\ell}(\mu)\right\}\right\} \\
& =\min \left\{\max \left\{\phi_{\mathrm{mn}}^{\ell}(\mu), \phi_{\mathrm{f}}(\mu)\right\}, \phi_{\mathrm{mx}}^{\ell}(\mu)\right\} .
\end{aligned}
$$

Therefore $\sigma_{\mathrm{f}}^{\ell}(\mu)^{2}=\mathbf{f}\left(\mu, \phi_{\mathrm{f}}^{\ell}(\mu)\right)^{\mathrm{T}} \mathbf{V f}\left(\mu, \phi_{\mathrm{f}}^{\ell}(\mu)\right)$.
C. David Levermore (UMD)

