Lecture 7: Convex Optimizations

Radu Balan, David Levermore

March 29, 2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Convex Sets. Convex Functions

A set $S \subset \mathbb{R}^n$ is called a *convex set* if for any points $x, y \in S$ the line segment $[x, y] := \{tx + (1-t)y, 0 \le t \le 1\}$ is included in $S, [x, y] \subset S$.

A function $f: S \to \mathbb{R}$ is called *convex* if for any $x, y \in S$ and $0 \le t \le 1$, $f(tx + (1-t)y) \le t f(x) + (1-t)f(y)$. Here S is supposed to be a convex set in \mathbb{R}^n . Equivalently, f is convex if its epigraph is a convex set in \mathbb{R}^{n+1} . Epigraph: $\{(x, u) ; x \in S, u \ge f(x)\}$.

A function $f : S \to \mathbb{R}$ is called *strictly convex* if for any $x \neq y \in S$ and 0 < t < 1, f(tx + (1 - t)y) < tf(x) + (1 - t)f(y).

イロト イポト イヨト ・ヨー

Convex Optimization Problems

The general form of a convex optimization problem:

 $\min_{x\in S}f(x)$

where S is a closed convex set, and f is a convex function on S. Properties:

- Any local minimum is a global minimum. The set of minimizers is a convex subset of *S*.
- If f is strictly convex, then the minimizer is unique: there is only one local minimizer.

In general S is defined by equality and inequality constraints: $S = \{g_i(x) \le 0, 1 \le i \le p\} \cap \{h_j(x) = 0, 1 \le j \le m\}$. Typically h_j are required to be affine: $h_j(x) = a^T x + b$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Convex Programs

The hiarchy of convex optimization problems:

- **1** Linear Programs: Linear criterion with linear constraints
- Quadratic Problems: Quadratic Programs (QP); Quadratically Constrained Quadratic Problems (QCQP); Second-Order Cone Program (SOCP)
- Semi-Definite Programs(SDP)

Popular approach/solution: Primal-dual interior-point using Newton's method (second order)

Linear Programs

Linear Program:

$$\begin{array}{ll} \text{minimize} & c^{\mathsf{T}}x + d\\ \text{subject to} & Gx \leq h\\ & Ax = b \end{array}$$

where $G \in \mathbb{R}^{m \times n}$, $A \in \mathbb{R}^{p \times n}$.

(日)

Linear Programs

Linear Program:

$$\begin{array}{ll} \text{minimize} & c^{\mathsf{T}}x + d\\ \text{subject to} & Gx \leq h\\ & Ax = b \end{array}$$

where
$$G \in \mathbb{R}^{m \times n}$$
, $A \in \mathbb{R}^{p \times n}$.

Standard form LP:

Inequality form LP:

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax \leq b \end{array}$

Image: A matrix and a matrix

∃ ► < ∃ ►</p>

Cosnider a system of linear equations: Ax = b with more columns (unknowns) than rows (equations), i.e. A is "fat". We want to find the "sparsest" solution

minimize $||x||_0$ subject to Ax = b

where $||x||_0$ denotes the number of nonzero entries in x (i.e. the support size). This is a non-convex, NP-hard problem. Instead we solve its so-called "convexification":

minimize $||x||_1$ subject to Ax = b

where $||x||_1 = \sum_{k=1}^n |x_k|$. It is shown that, under some sonditions (RIP) the solutions of the two problems coincide.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

How to turn:

 $\begin{array}{ll} \text{minimize} & \left\| x \right\|_1 \\ \text{subject to} & Ax = b \end{array}$

into a LP?

(日)

How to turn:

minimize $||x||_1$ subject to Ax = b

into a LP? Method 1. Use the following auxiliary variables: $y = (y_k)_{1 \le k \le n}$ so that $|x_k| \le y_k$, or $x_k - y_k \le 0$, $-x_k - y_k \le 0$:

minimize
$$1^T y$$

subject to $Ax = b$
 $x - y \le 0$
 $-x - y \le 0$
 $-y \le 0$

How to turn:

 $\begin{array}{ll} \text{minimize} & \|x\|_1\\ \text{subject to} & Ax = b \end{array}$

into a LP?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

How to turn:

 $\begin{array}{ll} \text{minimize} & \|x\|_1 \\ \text{subject to} & Ax = b \end{array}$

into a LP? Method 2. Use the following substitutions (positive and negative parts): $x_k = u_k - v_k$, $|x_k| = u_k + v_k$, with $u_k, v_k \ge 0$:

minimize
$$1^T u + 1^T v$$

subject to $A(u - v) = b$
 $-u \le 0$
 $-v \le 0$

イロト イポト イヨト イヨト

Quadratic Problems QP: Quadratic Programs

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}x^{T}PX + q^{T}x + r\\ \text{subject to} & Gx \leq h\\ & Ax = b \end{array}$$

where $P = P^T \ge 0$, $P \in \mathbb{R}^{n \times n}$, $G \in \mathbb{R}^{m \times n}$, $A \in \mathbb{R}^{p \times n}$.

イロト イポト イヨト イヨト

Quadratic Problems QP: Quadratic Programs

minimize
$$\frac{1}{2}x^T P X + q^T x + r$$

subject to $Gx \le h$
 $Ax = b$

where $P = P^T \ge 0$, $P \in \mathbb{R}^{n \times n}$, $G \in \mathbb{R}^{m \times n}$, $A \in \mathbb{R}^{p \times n}$. Example: Constrained Regression (constrained least-squares). Typical LS problem: min $||Ax - b||_2^2 = \min x^T A X - 2b^T A x + b^T b$ has solution:

$$x = A^{\dagger}b = (A^{T}A)^{-1}A^{T}b.$$

Constrained least-squares:

minimize
$$||Ax - b||_2^2$$

subject to $I_i \le x_i \le u_i, i = 1, \dots, n$

Quadratic Problems QCQP: Quadratically Constrained Quadratic Programs

minimize
$$\frac{1}{2}x^T P X + q^T x + r$$

subject to $\frac{1}{2}x^T P_i x + q_i^T x + r_i \le 0, \quad i = 1, \cdots, m$
 $Ax = b$

where $P = P^T \ge 0$, $P_i = P_i^T \ge 0$, $i = 1, \dots, m$, $P, P_i \in \mathbb{R}^{n \times n}$, $A \in \mathbb{R}^{p \times n}$.

(日)

Quadratic Problems QCQP: Quadratically Constrained Quadratic Programs

minimize
$$\frac{1}{2}x^T P X + q^T x + r$$

subject to $\frac{1}{2}x^T P_i x + q_i^T x + r_i \le 0, \quad i = 1, \cdots, m$
 $Ax = b$

where $P = P^T \ge 0$, $P_i = P_i^T \ge 0$, $i = 1, \dots, m$, $P, P_i \in \mathbb{R}^{n \times n}$, $A \in \mathbb{R}^{p \times n}$.

Remark

- 1. QP can be solved by QCQP: set $P_i = 0$.
- 2. Criterion can always be recast in a linear form with unknown $[x_0; x]$:

minimize
$$x_0$$

subject to $\frac{1}{2}x^T P x + q^T x - x_0 + r \le 0$
 $\frac{1}{2}x^T P_i x + q_i^T x + r_i \le 0, \quad i = 1, \cdots, m$
 $Ax = b$

Quadratic Problems SOCP: Second-Order Cone Programs

minimize
$$f^T x$$

subject to $||A_i x + b_i||_2 \le c_i^T x + d_i, \quad i = 1, \cdots, m$
 $Fx = g$

where
$$A_i \in \mathbb{R}^{n_i \times n}$$
, $F \in \mathbb{R}^{p \times n}$.

SOCP is the most general form of a quadratic problem. QCQP: $c_i = 0$ except for i = 0.

Example

The placement problem: Given a set of weights $\{w_{ij}\}$ and of fixed points $\{x_1, \dots, x_L\}$, find the set of points $\{x_{L+1}, \dots, x_N\}$ that minimize for $p \ge 1$:

$$\min \sum_{1 \le i < j \le N} w_{ij} \|x_i - x_j\|_p.$$

Problem: For p = 2 recast it as a SOCP. For p = 1 it is a LP. (2, 2) Radu Balan, David Levermore () Optimization March 22, 2018

Semi-Definite Programs SDP and standard SDP

Semi-Definite Program with unknown $x \in \mathbb{R}^n$:

minimize
$$c^T x$$

subject to $x_1F_1 + \cdots + x_nF_n + G \le 0$
 $Ax = b$

where G, F_1, \dots, F_n are $k \times k$ symmetric matrices in S^k , $A \in \mathbb{R}^{p \times n}$.

Semi-Definite Programs SDP and standard SDP

Semi-Definite Program with unknown $x \in \mathbb{R}^n$:

minimize
$$c^T x$$

subject to $x_1F_1 + \cdots + x_nF_n + G \le 0$
 $Ax = b$

where G, F_1, \dots, F_n are $k \times k$ symmetric matrices in S^k , $A \in \mathbb{R}^{p \times n}$.

Standard form SDP:

Inequality form SDP:

minimize trace(CX)subject to $trace(A_iX) = b_i$ $X = X^T \ge 0$

minimize $c^T x$ subject to $x_1 A_1 + \cdots x_n A_n \leq B$

CVX Matlab package

Downloadable from: http://cvxr.com/cvx/ . Follows "Disciplined" Convex Programming – à la Boyd [2].

・ロト・部ト・モン・モン 三日


```
cvx_begin sdp
```

```
variable X(n,n) semidefinite;

minimize trace(X);

subject to

abs(trace(E1*X)-d1)<=epsx;

abs(trace(E2*X)-d2)<=epsx;

X = X^T > 0

minimize trace(X)

subject to

|trace(X) - d_1| \le \varepsilon

|trace(E_1X) - d_1| \le \varepsilon
```

cvx_end

< ロ > < 同 > < 回 > < 回 > < 回 > <

Dual Problem

Primal Problem:

$$p^* = ext{minimize} \quad f_0(x) \ ext{subject to} \quad f_i(x) \leq 0, \quad i = 1, \cdots, m \ h_i(x) = 0, \quad i = 1, \cdots, p$$

Define the Lagrangian, $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

Variables $\lambda \in \mathbb{R}^m$ and $\nu \in \mathbb{R}^p$ are called *dual variables*, or Lagrange multipliers.

• • = • • = •

Dual Problem Lagrange Dual Function

The Lagrange dual function (or the *dual function*) is given by:

$$g(\lambda,\nu) = \inf_{x \in D} L(x,\lambda,\nu) = \inf_{x \in D} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

where $D \subset \mathbb{R}^n$ is the domain of definition of all functions.

Remark

1. Key estimate: For any $\lambda \ge 0$, and any ν ,

$$g(\lambda,
u) \leq p^*$$

because $g(\lambda, \nu) = L(x^*, \lambda, \nu) = f_0(x^*) + \lambda^T f(x^*) + \nu^T h(x^*) \le f_0(x^*)$. 2. $g(\lambda, \nu)$ is a concave function regardless of problem convexity.

Dual Problem

The dual problem is given by:

$$d^* = egin{array}{cc} \max {
m maximize} & g(\lambda,
u) \ & {
m subject to} & \lambda \geq 0 \end{array}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Dual Problem

The dual problem is given by:

$$d^* = \max_{\substack{\text{maximize} \ g(\lambda,
u) \ \text{subject to} \ \lambda \ge 0}}$$

Remark

 The dual problem is always a convex optimization problem (maximization of a concave function, with convex constraints).
 We always have weak duality:

$$d^* \leq p^*$$

Dual Problem The duality gap. Strong duality

The duality gap is $p^* - d^*$. If the primal is a convex optimization problem:

$$p^* = ext{minimize} ext{ } f_0(x) \ ext{subject to} ext{ } f_i(x) \leq 0, ext{ } i = 1, \cdots, m \ ext{ } Ax = b$$

and the Slater's constraint qualification condition holds: there is a feasible $x \in relint(D)$ so that $f_i(x) < 0$, $i = 1, \dots, m$, then the strong duality holds:

$$d^* = p^*$$

(Slater's condition is a sufficient, not a necessary condition.)

Assume $f_0, f_1, \dots, f_m, h_1, \dots, h_p$ are differentiable with open domains. Assume x^* and (λ^*, ν^*) be any primal and dual optimal points with zero duality gap. It follows that $\nabla L(x, \lambda^*, \nu^*)|_{x=x^*} = 0$ and $g(\lambda^*, \nu^*) = L(x^*, \lambda^*, \nu^*) = f_0(x^*)$. We obtain the following set of equations called the *KKT conditions*:

$$\begin{split} f_i(x^*) &\leq 0 \quad , \quad i = 1, \cdots, m \\ h_i(x^*) &= 0 \quad , \quad i = 1, \cdots, p \\ \lambda_i^* &\geq 0 \quad , \quad i = 1, \cdots, m \\ \lambda_i^* f_i(x^*) &= 0 \quad , \quad i = 1, \cdots, m \\ \nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{i=1}^p \nu_i^* \nabla h_i(x^*) = 0 \end{split}$$

Assume $f_0, f_1, \dots, f_m, h_1, \dots, h_p$ are differentiable with open domains. Assume x^* and (λ^*, ν^*) be any primal and dual optimal points with zero duality gap. It follows that $\nabla L(x, \lambda^*, \nu^*)|_{x=x^*} = 0$ and $g(\lambda^*, \nu^*) = L(x^*, \lambda^*, \nu^*) = f_0(x^*)$. We obtain the following set of equations called the *KKT conditions*:

$$\begin{split} f_i(x^*) &\leq 0 \quad , \quad i = 1, \cdots, m \\ h_i(x^*) &= 0 \quad , \quad i = 1, \cdots, p \\ \lambda_i^* &\geq 0 \quad , \quad i = 1, \cdots, m \\ \lambda_i^* f_i(x^*) &= 0 \quad , \quad i = 1, \cdots, m \\ \nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{i=1}^p \nu_i^* \nabla h_i(x^*) = 0 \end{split}$$

Remark: $\lambda_i^* f_i(x^*) = 0$ for each *i* are called the *complementary slackness* conditions

Assume the primal problem is *convex* with h(x) = Ax - b and f_0, \dots, f_m differentiable. Assume \tilde{x} , $(\tilde{\lambda}, \tilde{\nu})$ satisfy the KKT conditions:

$$\begin{aligned} f_i(\tilde{x}) &\leq 0 \quad , \quad i = 1, \cdots, m \\ A\tilde{x} &= b \quad , \quad i = 1, \cdots, p \\ \tilde{\lambda}_i &\geq 0 \quad , \quad i = 1, \cdots, m \\ \tilde{\lambda}_i f_i(\tilde{x}) &= 0 \quad , \quad i = 1, \cdots, m \\ \nabla f_0(\tilde{x}) + \sum_{i=1}^m \tilde{\lambda}_i \nabla f_i(\tilde{x}) + A^T \tilde{\nu} &= 0 \end{aligned}$$

Then \tilde{x} and $(\tilde{\lambda}, \tilde{\nu})$ are primal and dual optimal with zero duality gap.

Assume the primal problem is *convex* with h(x) = Ax - b and f_0, \dots, f_m differentiable. Assume \tilde{x} , $(\tilde{\lambda}, \tilde{\nu})$ satisfy the KKT conditions:

$$egin{aligned} f_i(ilde{x}) &\leq 0 &, \quad i=1,\cdots,m \ && A ilde{x}=b &, \quad i=1,\cdots,p \ && ilde{\lambda}_i \geq 0 &, \quad i=1,\cdots,m \ && ilde{\lambda}_i f_i(ilde{x})=0 &, \quad i=1,\cdots,m \ && ilde{\lambda}_i f_i(ilde{x})+A^T ilde{
u}=0 \end{aligned}$$

Then \tilde{x} and $(\tilde{\lambda}, \tilde{\nu})$ are primal and dual optimal with zero duality gap. A *primal-dual interior-point algorithm* is an iterative algorithm that approaches a solution of the KKT system of conditions.

Radu Balan, David Levermore ()

Primal-Dual Interior-Point Method

Idea: Solve the nonlinear system $r_t(x, \lambda, \nu) = 0$ with

$$r_t(x,\lambda,\nu) = \begin{bmatrix} \nabla f_0(x) + Df(x)^T \lambda + A^T \nu \\ -diag(\lambda)f(x) - (1/t)1 \\ Ax - b \end{bmatrix} , \quad f(x) = \begin{bmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{bmatrix}$$

and t > 0, using Newton's method (second order). The search direction is obtained by solving the linear system:

$$\begin{bmatrix} \nabla^2 f_0(x) + \sum_{i=1}^m \lambda_i \nabla^2 f_i(x) & Df(x)^T & A^T \\ -diag(\lambda)Df(x) & -diag(f(x)) & 0 \\ A & 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \lambda \\ \Delta \nu \end{bmatrix} = -r_t(x, \lambda, \nu).$$

At each iteration t increases by the reciprocal of the (surogate) duality gap $-\frac{1}{f(x)^T\lambda}$.

Radu Balan, David Levermore ()

References

- B. Bollobás, **Graph Theory. An Introductory Course**, Springer-Verlag 1979. **99**(25), 15879–15882 (2002).
- S. Boyd, L. Vandenberghe, Convex Optimization, available online at: http://stanford.edu/ boyd/cvxbook/
- F. Chung, **Spectral Graph Theory**, AMS 1997.
- F. Chung, L. Lu, The average distances in random graphs with given expected degrees, Proc. Nat.Acad.Sci. 2002.
- F. Chung, L. Lu, V. Vu, The spectra of random graphs with Given Expected Degrees, Internet Math. 1(3), 257–275 (2004).
- R. Diestel, **Graph Theory**, 3rd Edition, Springer-Verlag 2005.
- P. Erdös, A. Rényi, On The Evolution of Random Graphs

< ロ > < 同 > < 三 > < 三 >

- G. Grimmett, **Probability on Graphs. Random Processes on Graphs and Lattices**, Cambridge Press 2010.
- C. Hoffman, M. Kahle, E. Paquette, Spectral Gap of Random Graphs and Applications to Random Topology, arXiv: 1201.0425 [math.CO] 17 Sept. 2014.
- A. Javanmard, A. Montanari, Localization from Incomplete Noisy Distance Measurements, arXiv:1103.1417, Nov. 2012; also ISIT 2011.
- J. Leskovec, J. Kleinberg, C. Faloutsos, Graph Evolution: Densification and Shrinking Diameters, ACM Trans. on Knowl.Disc.Data, **1**(1) 2007.