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Spectral Theory Numerical Results Proof of Concentration Graph Partitions. Cheeger Constant

Eigenvalues of Laplacians
∆, L, ∆̃

Today we discuss the spectral theory of graphs. Recall the Laplacian
matrices:

∆ = D − A , ∆ij =


di if i = j
−1 if (i , j) ∈ E
0 otherwise

L = D−1∆ , Li ,j =


1 if i = j and di > 0
− 1

d(i) if (i , j) ∈ E
0 otherwise

∆̃ = D−1/2∆D−1/2 , ∆̃i ,j =


1 if i = j and di > 0

− 1√
d(i)d(j)

if (i , j) ∈ E
0 otherwise

Remark: D−1,D−1/2 are the pseudoinverses.
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Eigenvalues of Laplacians
∆, L, ∆̃

What do we know about the set of eigenvalues of these matrices for a
graph G with n vertices?

1 ∆ = ∆T ≥ 0 and hence its eigenvalues are non-negative real
numbers.

2 eigs(∆̃) = eigs(L) ⊂ [0, 2].
3 0 is always an eigenvalue and its multiplicity equals the number of

connected components of G ,
dim ker(∆) = dim ker(L) = dim ker(∆̃) = #connected components.

Let 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 be the eigenvalues of ∆̃. Denote
λ(G) = max

1≤i≤n−1
|1− λi |.

Note
∑n−1

i=1 λi = trace(∆̃) = n. Hence the average eigenvalue is about 1.
λ(G) is called the absolute gap and measures the spread of eigenvalues
away from 1.
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The absolute spectral gap
λ(G)

The main result in [8]) says that for connected graphs w/h.p.:

λ1 ≥ 1− C√
Average Degree

= 1− C√
p(n − 1)

= 1− C
√ n

2m .

Theorem (For class Gn,p)
Fix δ > 0 and let p > ( 1

2 + δ)log(n)/n. Let d = p(n − 1) denote the
expected degree of a vertex. Let G̃ be the giant component of the
Erdös-Rényi graph. For every fixed ε > 0, there is a constant C = C(δ, ε),
so that

max(|1− λ1|, λn−1 − 1) = λ(G̃) ≤ C√
d

= C
√ n

2m

with probability at least 1− Cn exp(−(2− ε)d)− C exp(−d1/4log(n)).

Connectivity threshold: p ∼ log(n)
n .
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The absolute spectral gap
λ(G)

The main result in [8] says that for connected graphs w/h.p.:

λ1 ≥ 1− C√
Average Degree

= 1− C√
p(n − 1)

= 1− C
√ n

2m .

Theorem (For class Γn,m)
Fix δ > 0 and let m > 1

2 ( 1
2 + δ)n log(n). Let d = 2m

n denote the expected
degree of a vertex. Let G̃ be the giant component of the Erdös-Rényi
graph. For every fixed ε > 0, there is a constant C = C(δ, ε), so that

max(|1− λ1|, λn−1 − 1) = λ(G̃) ≤ C√
d

= C
√ n

2m

with probability at least 1− Cn exp(−(2− ε)d)− C exp(−d1/4log(n)).

Connectivity threshold: m ∼ 1
2 n log(n).
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Random graphs
λ1 for random graphs

Results for n = 100 vertices: λ1(G̃) ≈ 1− C√
m .

Radu Balan (UMD) Graphs 5 February 27, 2018



Spectral Theory Numerical Results Proof of Concentration Graph Partitions. Cheeger Constant

Random graphs
1 − λ1 for random graphs

Results for n = 100 vertices: 1− λ1(G̃) ≈ C√
m .

Radu Balan (UMD) Graphs 5 February 27, 2018



Spectral Theory Numerical Results Proof of Concentration Graph Partitions. Cheeger Constant

Random graphs
1 − λ1 for random graphs

Results for n = 100 vertices: 1− λ1(G̃) ≈ C√
m . Detail.
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Random graphs
log(1 − λ1) vs. log(m) for random graphs

Results for n = 100 vertices: log(1− λ1(G̃)) ≈ b0 − 1
2 log(m).
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AR(1) Prediction Model
Construction of weight matrix

See the high-res (FishReef 640x360) and low-res (10x10) movies.
Model: Use current frame (x (t)) to predict the increment (x (t+1) − x (t)):

x (t+1) = x (t) + Wx (t) + ν(t)

with constraints: W = W T , diag(W ) = 0, (potentially also) Wi ,j ≥ 0.

The MLE/LSE (least-Squares) estimator minimizes:

W = argmin
W = W T

diag(W ) = 0
Wi ,j ≥ 0

T∑
t=1
‖Wx (t) − (x (t+1) − x (t))‖2

2
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AR(1) Prediction Model
CVX code

Criterion is expanded as:

J(W ) = trace(WRW T )− 2trace(WQ) + r0 , R =
∑

t
x (t)(x (t))T

and then rewritten as

J(w) = wT R2w − qT w + r0

where w is a 4950-long vector (n = 100).

To appreciate the convenience of CVX:
cvx begin

variable w(n2) nonnegative
minimize (w’ * R2 * w - q’ *w + r0)

cvx end
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AR(1) Prediction Model
Weight matrix visualisation: Wi,j ≥ 0.

Figure: Weight matrix W for the 10x10 low resolution movie. Entries are color
coded according to colormap.
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AR(1) Prediction Model
Cumulative count of 3-cliques

Figure: Cumulative count of 3-cliques, X3, for W = W T , diag(W ) = 0, Wi,j ≥ 0,
order according to Wi,j
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AR(1) Prediction Model
Analysis of the cumulative count of 3-cliques

Figure: log(X3) vs. log(m) for: the cumulative
count of 3-cliques, best linear fit a0log(m) + b0,
3log(m) + b3 (random graph)

Best linear fit:

y = 2.974log(m)− 13.146.

Random graph:

E[X3] = 4(n − 2)
3n2(n − 1)2 m3.
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AR(1) Prediction Model
Cumulative count of 4-cliques

Figure: Cumulative count of 4-cliques, X4, for W = W T , diag(W ) = 0, Wi,j ≥ 0
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AR(1) Prediction Model
Analysis of the cumulative count of 4-cliques

Figure: log(X4) vs. log(m) for: the cumulative
count of 4-cliques, best linear fit a0log(m) + b0,
6log(m) + b4 (random graph)

Best linear fit:

y = 5.383log(m)− 30.376.

Random graph:

E[X4] = 8(n − 2)(n − 3)
3n5(n − 1)5 m6.
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AR(1) Prediction Model
Number of connected components

Figure: Nc vs. m, for W = W T , diag(W ) = 0 and
Wi,j ≥ 0

First connected graph at
m = 199.
Connectivity threshold for
random graphs:

mc = 1
2n log(n) = 230.
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AR(1) Prediction Model
Second Smallest Eigenvalue

Figure: Distribution of the 2nd smallest eigenvalue of normalized graph Laplacian,
for W = W T , diag(W ) = 0 and Wi,j ≥ 0
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AR(1) Prediction Model
Analysis of the absolute spectral gap

Figure: log(λ(G)) = log(1− λ1) vs. log(m); best
linear fit; random graph: c − 1

2 log(m)

Best linear fit:

y = −0.594log(m)+3.292.

Random graph:

log(1−λ1) ≈ c− 1
2 log(m).

(LSE: c = 2.625.)
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AR(1) Prediction Model
Weight matrix visualisation: No sign constraints.

Figure: Weight matrix W for the 10x10 low resolution movie. Entries are color
coded according to colormap.
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AR(1) Prediction Model
Cumulative count of 3-cliques

Figure: Cumulative count of 3-cliques, X3, for W = W T , diag(W ) = 0, order
according to |Wi,j |
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AR(1) Prediction Model
Analysis of the cumulative count of 3-cliques

Figure: log(X3) vs. log(m) for: the cumulative
count of 3-cliques, best linear fit a0log(m) + b0,
3log(m) + b3 (random graph)

Best linear fit:

y = 2.377log(m)− 8.496.

Random graph:

E[X3] = 4(n − 2)
3n2(n − 1)2 m3.
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AR(1) Prediction Model
Cumulative count of 4-cliques

Figure: Cumulative count of 4-cliques, X4, for W = W T , diag(W ) = 0
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AR(1) Prediction Model
Analysis of the cumulative count of 4-cliques

Figure: log(X4) vs. log(m) for: the cumulative
count of 4-cliques, best linear fit a0log(m) + b0,
6log(m) + b4 (random graph)

Best linear fit:

y = 4.195log(m)− 21.136.

Random graph:

E[X4] = 8(n − 2)(n − 3)
3n5(n − 1)5 m6.
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AR(1) Prediction Model
Number of connected components

Figure: Nc vs. m, for W = W T and diag(W ) = 0

First connected graph at
m = 833.
Connectivity threshold for
random graphs:

mc = 1
2n log(n) = 230.
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AR(1) Prediction Model
Second Smallest Eigenvalue

Figure: Distribution of the 2nd smallest eigenvalue of normalized graph Laplacian,
for W = W T , diag(W ) = 0
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AR(1) Prediction Model
Analysis of the absolute spectral gap

Figure: log(λ(G)) = log(1− λ1) vs. log(m); best
linear fit; random graph: c − 1

2 log(m)

Best linear fit:

y = −1.084log(m)+6.958.

Random graph:

log(1−λ1) ≈ c− 1
2 log(m).

(LSE: c = 2.618.)
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The absolute spectral gap
Proof

How to obtain such estimates? Following [4]:
First note: λi = 1− λi (D−1/2AD−1/2). Thus

λ(G) = max
1≤i≤n−1

|1− λi | = ‖D−1/2AD−1/2‖ =
√
λmax ((D−1/2AD−1/2)2)

Ideas:
1 For X = D−1/2AD−1/2, and any positive integer k > 0,

λmax (X 2) =
(
λmax (X 2k)

)1/k
≤
(

trace(X 2k)
)1/k

2 (Markov’s inequality)

Prob{λ(G) > t} = Prob{λ(G)2k > t2k} ≤ 1
t2k E[trace(X 2k)].
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The absolute spectral gap
Proof (2)

Consider the easier case when D = dI (all vertices have the same degree):

E[(X 2k)] = 1
d2k E[trace(A2k)].

The expectation turns into numbers of 2k-cycles and loops. Combinatorial
kicks in ...

Remark
An additional ingredient sometimes: Bernstein’s ”trick” for X ≥ 0,

Prob{X ≤ t} = Prob{e−sX ≥ e−st} ≤ min
s≥0

E[e−sX ]
e−st

= min
s≥0

est
∫ ∞

0
e−sx pX (x)dx

(the ”Laplace” method). It gives exponential decay instead of 1
t or 1

t2 .
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The Cheeger constant
Partitions

Fix a graph G = (V, E) with n vertices and m edges. We try to find an
optimal partition V = A ∪ B that minimizes a certain quantity.
Here are the concepts:

1 For two disjoint sets of vertices A abd B, E (A,B) denotes the set of
edges that connect vertices in A with vertices in B:

E (A,B) = {(x , y) ∈ E , x ∈ A , y ∈ B}.

2 The volume of a set of vertices is the sum of its degrees:

vol(A) =
∑
x∈A

dx .

3 For a set of vertices A, denote Ā = V \ A its complement.
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The Cheeger constant
hG

The Cheeger constant hG is defined as

hG = min
S⊂V

|E (S, S̄)|
min(vol(S), vol(S̄))

.

Remark
It is a min edge-cut problem: This means, find the minimum number of
edges that need to be cut so that the graph becomes disconnected, while
the two connected components are not too small.
There is a similar min vertex-cut problem, where E (S, S̄) is replaced by
δ(S), the set of boundary points of S (the constant is denoted by gG).

Remark
The graph is connected iff hG > 0.
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The Cheeger inequalities
hG and λ1

See [2](ch.2):

Theorem
For a connected graph

2hG ≥ λ1 > 1−
√

1− h2
G >

h2
G
2 .

Equivalently: √
2λ1 >

√
1− (1− λ1)2 > hG ≥

λ1
2 .

Why is it interesting: finding the exact hG is a NP-hard problem.
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The Cheeger inequalities
Proof of upper bound

Why the upper bound: 2hG ≥ λ1?
All starts from understanding what λ1 is:

∆1 = 0→ ∆̃D1/21 = 0
Hence the eigenvector associated to λ0 = 0 is

g0 = (
√

d1,
√

d2, · · · ,
√

dn)T .

The eigenpair (λ1, g1) is given by a solution of the following optimization
problem:

λ1 = min
h⊥g0

〈∆̃h, h〉
〈h, h〉

In particular any h so that 〈h, g0〉 =
∑n

k=1 hk
√

dk = 0 satisfies

〈∆̃h, h〉 ≥ λ1‖h‖2.
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The Cheeger inequalities
Proof of upper bound (2)

Assume that we found the optimal partition (A = S,B = S̄) of V that
minimizes the edge-cut.
Define the following particular n-vector:

hk =


√

dk
vol(A) if k ∈ A = S
−
√

dk
vol(B) if k ∈ B = V \ S

One checks that
∑n

k=1 hk
√

dk = 1− 1 = 0, and ‖h‖2 = 1
vol(A) + 1

vol(B) .
But:

〈∆̃h, h〉 =
∑

(i ,j):Ai,j =1
( hi√

di
− hj√

dj
)2 = |E (A,B)|

( 1
vol(A) + 1

vol(B)

)2
.

Thus:

2hG = 2|E (A,B)|
min(vol(A), vol(B)) ≥ |E (A,B)|

( 1
vol(A) + 1

vol(B)

)
≥ λ1.
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Min-cut Problems
Initialization

The proof of the upper bound in Cheeger inequality reveals a ”good”
initial guess of the optimal partition:

1 Compute the eigenpair (λ1, g1) associated to the second smallest
eigenvalue;

2 Form the partition:

S = {k ∈ V , g1
k ≥ 0} , S̄ = {k ∈ V , g1

k < 0}
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Min-cut Problems
Weighted Graphs

The Cheeger inequality holds true for weighted graphs, G = (V, E ,W ).
∆ = D −W , D = diag(wi )1≤i≤n, wi =

∑
j 6=i wi ,j

∆̃ = D−1/2∆D−1/2 = I − D−1/2WD−1/2

eigs(∆̃) ⊂ [0, 2]

hG = minS

∑
x∈S,y∈S̄ Wx,y

min(
∑

x∈S Wx,x ,
∑

y∈S̄ Wy,y )

2hG ≥ λ1 ≥ 1−
√

1− h2
G

Good initial guess for optimal partition: Compute the eigenpair
(λ1, g1) associated to the second smallest eigenvalue of ∆̃; set:

S = {k ∈ V , g1
k ≥ 0} , S̄ = {k ∈ V , g1

k < 0}
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