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Spectral Theory
[ Yolele)

Eigenvalues of Laplacians
A LA

Today we discuss the spectral theory of graphs. Recall the Laplacian
matrices:

di if i=j
A=D—-A, Nj=4 -1 if (i,j)e&
0 otherwise

1 if i=jandd; >0

L=D7A | Lij= —ﬁ if (i,j)e&
0 otherwise
1 if i=jand d; >0
~ 71 2 71 2 ~ _; . P
A=DY2AD?2 | A= rE (i,j)e&
0 otherwise
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Spectral Theory
[ Yolele)

Eigenvalues of Laplacians
A LA

Today we discuss the spectral theory of graphs. Recall the Laplacian
matrices:

di if i=j
A=D—-A, Nj=4 -1 if (i,j)e&
0 otherwise

1 if i=jandd; >0

L=D"A , Lij=4 —qi i  ()eE
0 otherwise
1 if i=jand d; >0
X —1/2 —1/2 A 1 P
A=DY2AD?2 | A= rE (i,j)e&
0 otherwise

Remark: D1, D=1/2 are the pseudoinverses.
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Spectral Theory
0e00

Eigenvalues of Laplacians
A LA

What do we know about the set of eigenvalues of these matrices for a
graph G with n vertices?

@ A = AT >0 and hence its eigenvalues are non-negative real
numbers.

Q eigs(A) = eigs(L) C [0,2].
© 0 is always an eigenvalue and its multiplicity equals the number of
connected components of G,

dim ker(A) = dim ker(L) = dim ker(A) = #connected components.
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Spectral Theory
0e00

Eigenvalues of Laplacians
A LA

What do we know about the set of eigenvalues of these matrices for a
graph G with n vertices?

@ A = AT >0 and hence its eigenvalues are non-negative real
numbers.

Q eigs(A) = eigs(L) C [0,2].
© 0 is always an eigenvalue and its multiplicity equals the number of
connected components of G,

dim ker(A) = dim ker(L) = dim ker(A) = #connected components.
Let 0 = Ao < A1 < --- < Ap—1 be the eigenvalues of A. Denote
AMG) = max . |1 — X

1<i<n—

Note Z,f’;ll \i = trace(A) = n. Hence the average eigenvalue is about 1.
A(G) is called the absolute gap and measures the spread of eigenvalues

away from 1.
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Spectral Theory
[eYe] Yo

The absolute spectral gap
A(G)

The main result in [8]) says that for connected graphs w/h.p.:

A > 1 < - _—1-c /]
L= V/Average Degree Vvp(n—1) B Vam’

Theorem (For class G, )

Fix § > 0 and let p > (5 + 6)log(n)/n. Let d = p(n — 1) denote the
expected degree of a vertex. Let G be the giant component of the
Erdés-Rényi graph. For every fixed € > 0, there is a constant C = C(d,¢),
so that

- C n
maX(’l—All,/\n_l—l):A(G)SWZC %

with probability at least 1 — Cn exp(—(2 — ¢)d) — C exp(—d*/*log(n)).

v

Connectivity threshold: p ~ @.
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Spectral Theory
ocooe

The absolute spectral gap
A(G)

The main result in [8] says that for connected graphs w/h.p.:

C C n
\m:“@

A >1— =1
b= /Average Degree

Theorem (For class [™™)

Fix § > 0 and let m > (1 + 6)nlog(n). Let d = 2™ denote the expected
degree of a vertex. Let G be the giant component of the Erdés-Rényi
graph. For every fixed € > 0, there is a constant C = C(J,¢), so that

~ C n
— 1 — = < — = —
max(|1 — A1], Anm1 — 1) = A(G) < 7d C 5

with probability at least 1 — Cn exp(—(2 — €)d) — C exp(—d*/*log(n)).

Connectivity threshold: m ~ %nlog(n).
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Numerical Results
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Random graphs

A1 for random graphs

Results for n = 100 vertices: A\1(G) ~ 1 — \/—%

Random graphs with n=100 vertices
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Numerical Results
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Random graphs

1 — \; for random graphs

Results for n = 100 vertices: 1 — A\1(G) ~ \/—%

Random graphs with n=100 vertices

1-Second Smallest Eigenvalue of Normalized Laplacian
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Numerical Results
00@0000000000000000000

Random graphs

1 — \; for random graphs

Results for n = 100 vertices: 1 — A\1(G) ~ \/—% Detail.

Random graphs with n=100 vertices
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Numerical Results
000@000000000000000000

Random graphs

log(1 — A1) vs. log(m) for random graphs

Results for n = 100 vertices: log(1 — A\1(G)) ~ by — Zlog(m).

& Random graphs with n=100 vertices
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Numerical Results
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AR(1) Prediction Model

Construction of weight matrix

See the high-res (FishReef 640x360) and low-res (10x10) movies.
Model: Use current frame (x(*)) to predict the increment (x(t+1) — x(0)):

with constraints: W = WT, diag(W) = 0, (potentially also) W;; > 0.
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Numerical Results
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AR(1) Prediction Model

Construction of weight matrix

See the high-res (FishReef 640x360) and low-res (10x10) movies.
Model: Use current frame (x(*)) to predict the increment (x(t+1) — x(0)):

with constraints: W = WT, diag(W) = 0, (potentially also) W;; > 0.
The MLE/LSE (least-Squares) estimator minimizes:

W = argmln Z [ Wix(®) — (x (1) — (t))Hg
W =
diag(W ) =0
Wi, =0
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Numerical Results
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AR(1) Prediction Model

CVX code

Criterion is expanded as:

J(W) = trace(WRWT) — 2trace(WQ) +ry , R= Zx(f)(x(f))T

t

and then rewritten as
J(w) = w Row—q"w+r

where w is a 4950-long vector (n = 100).
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AR(1) Prediction Model

CVX code

Criterion is expanded as:

J(W) = trace(WRWT) — 2trace(WQ) +ry , R= Zx(f)(x(f))T

t

and then rewritten as
J(w) = w Row—q"w+r

where w is a 4950-long vector (n = 100).
To appreciate the convenience of CVX:
cvx_begin

variable w(n2) nonnegative

minimize (w' * R2 * w - 9" *w + r0)
cvx_end
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Numerical Results
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AR(1) Prediction Model

Weight matrix visualisation: W;; > 0.

Weight matrix

pixel

40 60
pixel

Figure: Weight matrix W for the 10x10 low resolution movie. Entries are color

coded according to colormap.
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Numerical Results
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AR(1) Prediction Model

Cumulative count of 3-cliques

18 T T T T

0 1000 2000 3000 4000 5000

Figure: Cumulative count of 3-cliques, X3, for W = WT, diag(W) =0, W;; > 0,

order according to W, ;
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Numerical Results
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AR(1) Prediction Model

Analysis of the cumulative count of 3-cliques

14 log-log plot of actual, best linear fit, and random graph

This graph
Best fit
Random graph

Best linear fit:

log(X,)

y = 2.974log(m) — 13.146.

Random graph:

log(m) ‘ ' 4 n— 2
E[X3] = 3n2((n — 1))2 m3.
Figure: log(X3) vs. log(m) for: the cumulative
count of 3-cliques, best linear fit aglog(m) -+ by,

3log(m) + bs (random graph)
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AR(1) Prediction Model

Cumulative count of 4-cliques

4 <108 Cumulative count of 4-cliques

0 1000 2000 3000 4000 5000

Figure: Cumulative count of 4-cliques, Xy, for W = W, diag(W) = 0, W;;>0
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Numerical Results
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AR(1) Prediction Model

Analysis of the cumulative count of 4-cliques

log-log plot of actual, best linear fit, and random graph

This graph
Best fit
Random graph

Best linear fit:

log(X,)

y = 5.383log(m) — 30.376.

Random graph:

2 8(n—2)(n—3)
55 6 65 7 75 8 85 9 EXl= —k2— 7
log(m) [Xa] 3n5(n—1)5

Figure: log(Xs) vs. log(m) for: the cumulative
count of 4-cliques, best linear fit aglog(m) + by,
6log(m) + bs (random graph)
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Numerical Results
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AR(1) Prediction Model

Number of connected components

Number of connected components

~
=]

First connected graph at
m = 199.

Connectivity threshold for
random graphs:

I3
S

Number Connected Comps.
Now B g
S & 5 3

o

o

1
m¢ = —nlog(n) = 230.
0 1000 2000 3000 4000 5000 2

Figure: N vs. m, for W = W7, diag(W) = 0 and
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Numerical Results
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AR(1) Prediction Model

Second Smallest Eigenvalue

o
o0
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Second smallest Eigenvalue
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~ o
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Figure: Distribution of the 2"¢ smallest eigenvalue of normalized graph Laplacian,
for W= WT, diag(W)=0and W,; >0
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Numerical Results
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AR(1) Prediction Model

Analysis of the absolute spectral gap

log-log plot of actual, best linear fit, and random graph

Zj o Best linear fit:
gjﬁ:, y = —0.594/0g(m)+3.292.
. —«; X \ Random graph:
i iy log(1—X\1) =~ C—%log(m).
h ” P ke " ’

(LSE: ¢ =2.625.)
Figure: log(A(G)) = log(1 — A1) vs. log(m); best
linear fit; random graph: ¢ — %Iog(m)
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AR(1) Prediction Model

Weight matrix visualisation: No sign constraints.

Weight matrix
0.01

0.005

pixel

-0.005

-0.01

pixel

Figure: Weight matrix W for the 10x10 low resolution movie. Entries are color

coded according to colormap.
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Numerical Results
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AR(1) Prediction Model

Cumulative count of 3-cliques

18 x<10% Cumulative count of 3-cliques

0 1000 2000 3000 4000 5000

Figure: Cumulative count of 3-cliques, X3, for W = W7, diag(W) = 0, order

according to |W; ;
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Numerical Results
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AR(1) Prediction Model

Analysis of the cumulative count of 3-cliques

log-log plot of actual, best linear fit, and random graph

This graph
10+ Best fit 1
Random graph
8 = ]

Best linear fit:

£, y = 2.377log(m) — 8.496.
-4 Random graph:
2 3 4 5|o . 6 7 8 9 4 - 2
" E[X] = 55—t (n 1)2m3.
Figure: log(X3) vs. log(m) for: the cumulative n?(n—1)

count of 3-cliques, best linear fit aglog(m) -+ by,
3log(m) + bs (random graph)
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AR(1) Prediction Model

Cumulative count of 4-cliques

4 <108 Cumulative count of 4-cliques

0 1000 2000 3000 4000 5000

Figure: Cumulative count of 4-cliques, Xy, for W = WT, diag(W) =0
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Numerical Results
000000000000000000e000

AR(1) Prediction Model

Analysis of the cumulative count of 4-cliques

log-log plot of actual, best linear fit, and random graph

This graph

Best fit

Random graph | -
—

log(X,)
»

-10
4.5 5 55 6 6.5 7 75 8 8.5 9
log(m)

Figure: log(Xs) vs. log(m) for: the cumulative
count of 4-cliques, best linear fit aglog(m) + by,
6log(m) + bs (random graph)
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Best linear fit:
y = 4.195log(m) — 21.136.

Random graph:

8(n—2)(n—3) 6

Epal = 3n°(n—1)°
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AR(1) Prediction Model

Number of connected components

Number of connected components

~
=]

‘ First connected graph at
| m = 833.

| Connectivity threshold for
\ ] random graphs:
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!
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Figure: N¢ vs. m, for W = WT and diag(W) =0
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00000000000000000000e0

AR(1) Prediction Model

Second Smallest Eigenvalue

Second smallest Eigenvalue
o
(=)
“

021 1

0 1000 2000 3000 4000 5000

Figure: Distribution of the 2"¢ smallest eigenvalue of normalized graph Laplacian,
for W = WT, diag(W) =0
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AR(1) Prediction Model

Analysis of the absolute spectral gap

log-log plot of actual, best linear fit, and random graph

-0.2
ol NL i
Random graph
06} Best linear fit:

-08[

y = —1.084/og(m)+6.958.

log(|1-lambda,|)

Random graph:

1
log(1—X\1) =~ c— Elog(m).

6.6 6.8 7 7.2 7.4 76 7.8 8
log(m)

(LSE: ¢ =2.618.)
Figure: log(A(G)) = log(1 — A1) vs. log(m); best
linear fit; random graph: ¢ — %Iog(m)
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Proof of Concentration
0

The absolute spectral gap
Proof

How to obtain such estimates? Following [4]:
First note: \; = 1 — \;(D~Y2AD~Y/2). Thus

= N = ID"Y2AD1/2) = —1/2 Ap—1/2)2
MG) = max | [1=N| = [D72ADY2| = \/Apax((D-1/2AD-1/2)2)

Ideas:
© For X = D"1/2AD~1/2 and any positive integer k > 0,

1/k 1/k
Amax(X?) = (Amax(X2)) " < (trace(x?4)) "
@ (Markov's inequality)
1
Prob{\(G) > t} = Prob{\(G)* > t?} < ﬂ—kE[trace(XM)].
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Proof of Concentration
oce

The absolute spectral gap
Proof (2)

Consider the easier case when D = dI (all vertices have the same degree):

E[(sz)] dikIE[trace(Azk)]

The expectation turns into numbers of 2k-cycles and loops. Combinatorial
kicks in ...
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Proof of Concentration
oce

The absolute spectral gap
Proof (2)

Consider the easier case when D = dI (all vertices have the same degree):

E[(sz)] L E[trace(AZk)]

d2k

The expectation turns into numbers of 2k-cycles and loops. Combinatorial
kicks in ...

Remark

An additional ingredient sometimes: Bernstein’s "trick” for X > 0,

sX —st E[e—sX]
Prob{X < t} = Prob{e™*" > e *'} < m>|8 o st

oo
= min eSt/ e~ px(x)dx
s>0 0
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Proof of Concentration
oce

The absolute spectral gap
Proof (2)

Consider the easier case when D = dI (all vertices have the same degree):
1
d2kE[trace(A2k)]

The expectation turns into numbers of 2k-cycles and loops. Combinatorial
kicks in ...

E[(X*9)] =

Remark
An additional ingredient sometimes: Bernstein’s "trick” for X > 0,

sX —st E[e—sX]
Prob{X < t} = Prob{e™*" > e *'} < m>|8 o st

— st o —SX
—mlne/0 e px(x)dx

s>0

(the "Laplace” method). It gives exponential decay instead of % or %
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Graph Partitions. Cheeger Constant
©000000

The Cheeger constant

Partitions

Fix a graph G = (V, &) with n vertices and m edges. We try to find an

optimal partition V = AU B that minimizes a certain quantity.
Here are the concepts:

@ For two disjoint sets of vertices A abd B, E(A, B) denotes the set of
edges that connect vertices in A with vertices in B:

E(A,B)={(x,y)€€ , x€eA, yeB}
@ The volume of a set of vertices is the sum of its degrees:
vol(A) = d.
X€EA

© For a set of vertices A, denote A=V \ A its complement
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Graph Partitions. Cheeger Constant
0®00000

The Cheeger constant
he

The Cheeger constant hg is defined as

hec = min ‘E(S’§)|
€7 scy min(vol(S), vol(S))

Remark

It is a min edge-cut problem: This means, find the minimum number of
edges that need to be cut so that the graph becomes disconnected, while
the two connected components are not too small.

There is a similar min vertex-cut problem, where E(S, 3) is replaced by
0(S), the set of boundary points of S (the constant is denoted by g¢ ).

Remark
The graph is connected iff hg > 0.

v
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Graph Partitions. Cheeger Constant
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The Cheeger inequalities
h(; and )\1

See [2](ch.2):

Theorem

For a connected graph

h2
2hG2)\1>1—\/1—h26>7G.
/ A1

Why is it interesting: finding the exact hg is a NP-hard problem.

Equivalently:
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Graph Partitions. Cheeger Constant
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The Cheeger inequalities
Proof of upper bound

Why the upper bound: 2hg > A7
All starts from understanding what A1 is:

Al=0— ADY?1=0
Hence the eigenvector associated to Ao = 0 is
go = (\/d>17\/d>)"'7 Vdn)T~

The eigenpair (A1, g!) is given by a solution of the following optimization
problem:

_ (Ah, h)
A\ =
YT hle (hh)
In particular any h so that (h, g% = S"7_; hxv/dx = 0 satisfies
(Ah, h) > Ml|h]%.
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Graph Partitions. Cheeger Constant
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The Cheeger inequalities
Proof of upper bound (2)

Assume that we found the optimal partition (A= S,B = 3) of V that
minimizes the edge-cut.

Define the following particular n-vector:

. Gl if keA=S
Tl s if keB=V\S
One checks that 3X0_; hxv/de =1 —1=0, and ||h|* = Vo,l(A) + voll(B)'
But:
~ h; hj 1 1 \?
Ah, h) = ’—12:EAB( )
(Ah,h) Z (\/F,- dj) [E(A.B)] voI(A)+voI(B)
(i):A1j=1
Thus:
Dhe 2|E(A, B)|

1 1
= min(vol(A) vol(B)) = IEA-B)I <vol(A) + vol(B)) 2 AL
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Graph Partitions. Cheeger Constant
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Min-cut Problems

Initialization

The proof of the upper bound in Cheeger inequality reveals a "good”
initial guess of the optimal partition:

@ Compute the eigenpair (/\1,g1) associated to the second smallest
eigenvalue;

@ Form the partition:

S={keV , g>0}, S={keVv , g <0}
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Min-cut Problems
Weighted Graphs

The Cheeger inequality holds true for weighted graphs, G = (V, &, W).
o A=D— W, D = diag(w;)lgig,,, w; = Zj;éi W;J
o A=DY2AD Y2 = | - D2WD1/?

eigs(A) € [0,2]

Exes,yefs Wiy
mi"(ers WX’X7Zy€§ Ww,.,)

2he > M\ >1—/1—h2

Good initial guess for optimal partition: Compute the eigenpair
(A1, g1) associated to the second smallest eigenvalue of A; set:

hg = ming

S={keVv , gt>0}, S={keV , gi<0}
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