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Phase Transition in Random Graphs Numerical Results

Analytical Results
Distributions

Today we discuss about phase transition in random graphs. Recall on the
Erdös-Rényi class Gn,p of random graphs, the probability mass function on
G, P : G → [0, 1], is obtained by assuming that, as random variables, edges
are independent from one another, and each edge occurs with probability
p ∈ [0, 1]. Thus a graph G ∈ G with m vertices will have probability P(G)
given by

P(G) = pm(1− p)

(
n
2

)
−m

.

Recall the expected number of q-cliques Xq is

E[Xq] =
(

n
q

)
pq(q−1)/2
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Analytical Results
Distributions

We shall also use Γn,m the set of all graphs on n vertices with m edges.
The set Γn,m has cardinal 

(
n
2

)
m

 .
In Γn,m each graph is equally probable.
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Phase Transition in Random Graphs Numerical Results

Analytical Results
Cliques

The case of 3-cliques: E[X3] = θn3p3 (θ ∼ 1
6).

The case of 4-cliques: E[X4] = θn4p6 (θ ∼ 1
24).

The first problem we consider is thesize of the largest clique of a random
graph.
Note, finding the size of the largest clique (called the clique number) is a
NP-hard problem.

Idea: Analyze p so that E[Xq] ≈ 1.

For p > 1
n and large n we expect that graphs will have a 3-clique;

For p > 1
n2/3 and large n, we expect that graphs will have a 4-clique;

Question: How sharp are these thresholds?

Radu Balan () Graphs 1



Phase Transition in Random Graphs Numerical Results

Analytical Results
Cliques

The case of 3-cliques: E[X3] = θn3p3 (θ ∼ 1
6).

The case of 4-cliques: E[X4] = θn4p6 (θ ∼ 1
24).

The first problem we consider is thesize of the largest clique of a random
graph.
Note, finding the size of the largest clique (called the clique number) is a
NP-hard problem.
Idea: Analyze p so that E[Xq] ≈ 1.

For p > 1
n and large n we expect that graphs will have a 3-clique;

For p > 1
n2/3 and large n, we expect that graphs will have a 4-clique;

Question: How sharp are these thresholds?

Radu Balan () Graphs 1



Phase Transition in Random Graphs Numerical Results

Analytical Results
Cliques

The case of 3-cliques: E[X3] = θn3p3 (θ ∼ 1
6).

The case of 4-cliques: E[X4] = θn4p6 (θ ∼ 1
24).

The first problem we consider is thesize of the largest clique of a random
graph.
Note, finding the size of the largest clique (called the clique number) is a
NP-hard problem.
Idea: Analyze p so that E[Xq] ≈ 1.

For p > 1
n and large n we expect that graphs will have a 3-clique;

For p > 1
n2/3 and large n, we expect that graphs will have a 4-clique;

Question: How sharp are these thresholds?

Radu Balan () Graphs 1



Phase Transition in Random Graphs Numerical Results

Analytical Results
3-Cliques

Theorem
Let p = p(n) be the edge probability in Gn,p.

1 If p � 1
n (i.e. limn→∞ np =∞) then

limn→∞ Prob[G ∈ Gn,p has a 3− clique]→ 1.
2 If p � 1

n (i.e. limn→∞ np = 0) then
limn→∞ Prob[G ∈ Gn,p has a 3− clique]→ 0.

Theorem
Let m = m(n) be the number of edges in Γn,m.

1 If m� n (i.e. limn→∞
m
n =∞) then

limn→∞ Prob[G ∈ Γn,m has a 3− clique]→ 1.
2 If m� n (i.e. limn→∞

m
n = 0) then

limn→∞ Prob[G ∈ Γn,m has a 3− clique]→ 0.
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Phase Transition in Random Graphs Numerical Results

Analytical Results
4-Cliques

Theorem
Let p = p(n) be the edge probability in Gn,p.

1 If p � 1
n2/3 (i.e. limn→∞ n2/3p =∞) then

limn→∞ Prob[G ∈ Gn,p has a 4− clique]→ 1.
2 If p � 1

n2/3 (i.e. limn→∞ n2/3p = 0) then
limn→∞ Prob[G ∈ Gn,p has a 4− clique]→ 0.

Theorem
Let m = m(n) be the number of edges in Γn,m.

1 If m� n4/3 (i.e. limn→∞
m

n4/3 =∞) then
limn→∞ Prob[G ∈ Γn,m has a 4− clique]→ 1.

2 If m� n4/3 (i.e. limn→∞
m

n4/3 = 0) then
limn→∞ Prob[G ∈ Γn,m has a 4− clique]→ 0.
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Phase Transition in Random Graphs Numerical Results

Analytical Results
q-Cliques

Theorem
Let p = p(n) be the edge probability in Gn,p. Let q ≥ 3 be and integer.

1 If p � 1
n2/(q−1) (i.e. limn→∞ n2/(q−1)p =∞) then

limn→∞ Prob[G ∈ Gn,p has a q − clique]→ 1.
2 If p � 1

n2/(q−1) (i.e. limn→∞ n2/(q−1)p = 0) then
limn→∞ Prob[G ∈ Gn,p has a q − clique]→ 0.

Theorem
Let m = m(n) be the number of edges in Γn,m. Let q ≥ 3 be and integer.

1 If m� n2(q−2)/(q−1) (i.e. limn→∞
m

n2(q−2)/(q−1) =∞) then
limn→∞ Prob[G ∈ Γn,m has a q − clique]→ 1.

2 If m� n2(q−2)/(q−1) (i.e. limn→∞
m

n2(q−1)/(q−1) = 0) then
limn→∞ Prob[G ∈ Γn,m has a q − clique]→ 0.
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Phase Transition in Random Graphs Numerical Results

Analytical Results
Markov and Chebyshev Inequalities

We want to control probabilities of the random event X3(G) > 0. Two
important tools:

1 (Markov’s Inequality) Assume X is a non-negative random variable.
Then Prob[X ≥ t] ≤ E[X ]

t .
2 (Chebyshev’s Inequality) For any random variable X ,

Prob[|X − E [X ]| ≥ t] ≤ Var [X ]
t2 .

where E[X ] is the mean of X , and Var [X ] = E[X 2]− |E[X ]|2 is the
variance of X .

Quick Proof:

Prob[X ≥ t] =
∫ ∞

t
pX (x)dx ≤ 1

t

∫ ∞
t

xpX (x)dx ≤ E[X ]
t .

Prob[|X −E[X ]| ≥ t] = P[|X −E[X ]|2 ≥ t2] ≤ E[|X − E[X ]|2]
t2 = Var [X ]

t2 .

Radu Balan () Graphs 1



Phase Transition in Random Graphs Numerical Results

Analytical Results
Markov and Chebyshev Inequalities

We want to control probabilities of the random event X3(G) > 0. Two
important tools:

1 (Markov’s Inequality) Assume X is a non-negative random variable.
Then Prob[X ≥ t] ≤ E[X ]

t .
2 (Chebyshev’s Inequality) For any random variable X ,

Prob[|X − E [X ]| ≥ t] ≤ Var [X ]
t2 .

where E[X ] is the mean of X , and Var [X ] = E[X 2]− |E[X ]|2 is the
variance of X . Quick Proof:

Prob[X ≥ t] =
∫ ∞

t
pX (x)dx ≤ 1

t

∫ ∞
t

xpX (x)dx ≤ E[X ]
t .

Prob[|X −E[X ]| ≥ t] = P[|X −E[X ]|2 ≥ t2] ≤ E[|X − E[X ]|2]
t2 = Var [X ]

t2 .

Radu Balan () Graphs 1



Phase Transition in Random Graphs Numerical Results

Analytical Results
Proofs for the 3-clique case

For small probability: We shall use Markov’s inequality to show
Prob[X3 > 0]→ 0 when p � 1

n :

Prob[X3 > 0] = Prob[X3 ≥ 1] ≤ E [X3]
1 = n(n − 1)(n − 2)

6 p3 = θn3p3 → 0.

For large probability: Since E[X3]→∞ it follows that Prob[X3 > 0] > 0.
We need to show that Prob[X3 = 0]→ 0. By Chebyshev’s inequality:

Prob[X3 = 0] ≤ Prob[|X3 − E[X3]| ≥ E[X3]] ≤ Var [X3]
|E[X3]|2

Need the variance of X3 =
∑

(i ,j,k)∈S3 1i ,j,k ,

X 2
3 =

∑
(i ,j,k)∈S3

∑
(i ′,j′,k′)∈S3

1i ,j,k1i ′,j′,k′ .
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Phase Transition in Random Graphs Numerical Results

Analytical Results
Proofs for the 3-clique case

X 2
3 =

∑
(i ,j,k)∈S3(n)

1i ,j,k+
∑

(i ,j,k)∈S3(n)

∑
l∈S1(n−3)

(1i ,j,k1i ,j,l +1i ,j,k1j,k,l +1i ,j,k1k,i ,l )+

+
∑

(i ,j,k)∈S3(n)

∑
u,v∈S2(n−3)

(1i ,j,k1i ,u,v + 1i ,j,k1j,u,v 1i ,j,k1k,u,v )+

+
∑

(i ,j,k)∈S3(n)

∑
(i ′,j′,k′)∈S3(n−3)

1i ,j,k1i ′,j′,k′

E[X 2
3 ] = |S3|p3 + 3|S3|(n− 3)p5 + 3|S3|

(
n − 3

2

)
p6 + |S3|

(
n − 3

3

)
p6.

Thus

Var [X3] = E[X 2
3 ]− |E[X3]|2 = ... = θ(n3p3 + n4p5 + n5p6).
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Proofs for the 3-clique case

and:

Prob[X3 = 0] ≤ θ(n3p3 + n4p5 + n5p6)
θ(n6p6)

1
(np)3 + 1

n → 0.

Similar proofs for the other cases (4-cliques and q-cliques).
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Phase Transition in Random Graphs Numerical Results

Analytical Results
Behavior at the threshold

In general we obtain a ”coarse threshold”. Recall a Poisson process X with
parameter λ has p.m.f. Prob[X = k] = e−λ λk

k! .

Theorem
In Gn,p,

1 For p = c
n , X3 is asymptotically Poisson with parameter λ = c3/6.

2 For p = c
n2/3 , X4 is asymptotically Poisson with parameter λ = c6/24.

Theorem
In Γn,m,

1 For m = cn, X3 is asymptotically Poisson with parameter λ = 4c3/3.
2 For m = cn4/3, X4 is asymptotically Poisson with parameter
λ = 8c6/3.
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Analytical Results
Connected Components

Gn,p class of random graphs has a remarkable property in regards to the
largest connected component. We shall express the result in the class Γn,m.
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Phase Transition in Random Graphs Numerical Results

Analytical Results
Connected Components

Theorem
1 Let m = m(n) satisfies m� 1

2n log(n). Then

lim
n→∞

Prob[G ∈ Γn,m is connected ] = 0

2 Let m = m(n) satisfies m� 1
2n log(n). Then

lim
n→∞

Prob[G ∈ Γn,m is connected ] = 1

3 Assume m = 1
2n log(n) + tn + o(n), where o(n)� n. Then

lim
n→∞

Prob[G ∈ Γn,m is connected ] = e−e−2t

In this case 1
2n log(n) is known as a strong threshold.
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Numerical Results
3-cliques & Connectivity results

Results for n = 1000 vertices.
1 3-cliques. Recall E[X3] ∼ m3

2 Connectivity. Recall the connectivity threshold is 1
2n log(n) = 3454.
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Numerical Results
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