Lecture 3: Random Graphs

Radu Balan

February 13, 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

글 🖌 🖌 글 🛌 🗉

< □ > < (型 > <

э

The Erdös-Rényi class $\mathcal{G}_{n,p}$

Today we discuss about random graphs. The *Erdös-Rényi class* $\mathcal{G}_{n,p}$ of random graphs is defined as follows.

Algorithmics

The Erdös-Rényi class $\mathcal{G}_{n,p}$

Today we discuss about random graphs. The *Erdös-Rényi class* $\mathcal{G}_{n,p}$ of random graphs is defined as follows. Let \mathcal{V} denote the set of *n* vertices, $\mathcal{V} = \{1, 2, \dots, n\}$, and let \mathcal{G} denote the set of all graphs with vertices \mathcal{V} . There are exactly $2 \begin{pmatrix} n \\ 2 \end{pmatrix}$ such graphs. The probability mass function on \mathcal{G} , $P : \mathcal{G} \to [0, 1]$, is obtained by assuming that, as random variables, edges are independent from one another, and each edge occurs with probability P(G) given by

$$P(G) = p^{m}(1-p)^{\binom{n}{2}-m}$$

(explain why)

< ロ > < 同 > < 回 > < 回 > .

ヨト・モート

< □ > < (型 > <

э

The Erdös-Rényi class $\mathcal{G}_{n,p}$ Probability space

Formally, $\mathcal{G}_{n,p}$ stands for the the probability space (\mathcal{G}, P) composed of the set \mathcal{G} of all graphs with *n* vertices, and the probability mass function *P* defined above.

The Erdös-Rényi class $\mathcal{G}_{n,p}$ Probability space

Formally, $\mathcal{G}_{n,p}$ stands for the the probability space (\mathcal{G}, P) composed of the set \mathcal{G} of all graphs with *n* vertices, and the probability mass function *P* defined above.

A reformulation of *P*: Let $G = (\mathcal{V}, \mathcal{E})$ be a graph with *n* vertices and *m* edges and let *A* be its adjacency matrix. Then:

$$P(G) = \prod_{(i,j)\in\mathcal{E}} Prob((i,j) \text{ is an edge}) \prod_{(i,j)\notin\mathcal{E}} Prob((i,j) \text{ is not an edge}) =$$
$$= \prod_{1\leq i< j\leq n} p^{A_{i,j}} (1-p)^{1-A_{i,j}}$$

where the product is over all ordered pairs (i, j) with $1 \le i < j \le n$. Note:

$$|\{(i,j), 1 \le i < j \le n\}| = \binom{n}{2} \& |\{(i,j) \in \mathcal{E}\}| = |\mathcal{E}| = m = \sum_{1 \le i < j \le n} A_{i,j}.$$

Random Graphs

Algorithmics

The Erdös-Rényi class $\mathcal{G}_{n,p}$ Computations in $\mathcal{G}_{n,p}$

How to compute the expected number of edges of a graph in $\mathcal{G}_{n,p}$?

Image: A matrix and a matrix

글 🖌 🖌 글 🕨

3

The Erdös-Rényi class $\mathcal{G}_{n,p}$ Computations in $\mathcal{G}_{n,p}$

How to compute the expected number of edges of a graph in $\mathcal{G}_{n,p}$? Let $X_2 : \mathcal{G}_{n,p} \to \{0, 1, \cdots, \binom{n}{2}\}$ be the random variable of *number of edges of a graph G*.

$$X_2 = \sum_{1 \le i < j \le n} 1_{(i,j)}$$
, $1_{(i,j)}(G) = \begin{cases} 1 & \text{if } (i,j) \text{ is edge in } G \\ 0 & \text{if } otherwise \end{cases}$

Use linearity and the fact that $\mathbb{E}[1_{(i,j)}] = Prob((i,j) \in \mathcal{E}) = p$ to obtain:

$$\mathbb{E}[\text{Number of Edges}] = \left(egin{array}{c} n \\ 2 \end{array}
ight) p = rac{n(n-1)}{2}p$$

The Erdös-Rényi class $\mathcal{G}_{n,p}$ MLE of p

Given a realization G of a graph with n vertices and m edges, how to estimate the most likely p that explains the graph. Concept: The Maximum Likelihood Estimator (MLE). In statistics: The MLE of a parameter θ given an observation x of a random variable $X \sim p_X(x; \theta)$ is the value θ that maximizes the probability $P_X(x; \theta)$:

$$\theta_{MLE} = \operatorname{argmax}_{\theta} P_X(x; \theta).$$

In our case: our observation G has m edges. We know

$$P(G; p) = p^{m}(1-p) \binom{n}{2}^{-m}$$

The Erdös-Rényi class $\mathcal{G}_{n,p}$ MLE of p

Lemma

Given a random graph with n vertices and m edges, the MLE estimator of p is

$$p_{MLE} = \frac{m}{\binom{n}{2}} = \frac{2m}{n(n-1)}.$$

The Erdös-Rényi class $\mathcal{G}_{n,p}$ MLE of p

Lemma

Given a random graph with n vertices and m edges, the MLE estimator of p is

$$p_{MLE} = \frac{m}{\binom{n}{2}} = \frac{2m}{n(n-1)}.$$

Why

Note
$$log(P(G; p)) = mlog(p) + \left(\binom{n}{2} - m\right)log(1-p)$$
 and solve for p :

$$\frac{dlog(P)}{dp} = \frac{m}{p} - \frac{\binom{n}{2} - m}{1-p} = 0.$$
Radu Balan ()
Graphs 1

The Erdös-Rényi class $\mathcal{G}_{n,p}$ Method of Moments Estimator for p

An alternative parameter estimation method is the moment matching method. Given a likelihood function for observed data $p(x; \theta)$ and a sequence of observations (x_1, x_2, \dots, x_N) , the moment matching method computes the parameters $\theta \in \mathbb{R}^d$ by solving the system of equations:

$$\mathbb{E}[X] = \frac{1}{N} \sum_{t=1}^{N} x_t \cdots \mathbb{E}[X^d] = \frac{1}{N} \sum_{t=1}^{N} x_t^d$$

(or unbiased estimates of the moments). In particular, for the Erdös-Rényi class, we match the first moment with the observation: $\frac{n(n-1)}{2}p = m$. Hence

$$p_{MM}=\frac{2m}{n(n-1)},$$

same as the MLE estimator.

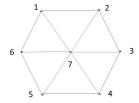
Cliques q-cliques

Definition

Given a graph $G = (\mathcal{V}, \mathcal{E})$, a subset of q vertices $S \subset \mathcal{V}$ is called a q-clique if the subgraph $(S, \mathcal{E}|_S)$ is complete.

In other words, S is a q-clique if for every $i \neq j \in S$, $(i, j) \in \mathcal{E}$ (or $(j, i) \in \mathcal{E}$), that is, (i, j) is an edge in G.

• Each edge is a 2-clique.

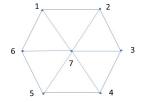


Cliques q-cliques

Definition

Given a graph $G = (\mathcal{V}, \mathcal{E})$, a subset of q vertices $S \subset \mathcal{V}$ is called a q-clique if the subgraph $(S, \mathcal{E}|_S)$ is complete.

In other words, S is a q-clique if for every $i \neq j \in S$, $(i,j) \in \mathcal{E}$ (or $(j,i) \in \mathcal{E}$), that is, (i,j) is an edge in G.



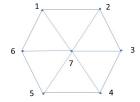
- Each edge is a 2-clique.
- {1,2,7} is a 3-clique. And so are {2,3,7}, {3,4,7}, {4,5,7}, {5,6,7}, {1,6,7}

Cliques q-cliques

Definition

Given a graph $G = (\mathcal{V}, \mathcal{E})$, a subset of q vertices $S \subset \mathcal{V}$ is called a q-clique if the subgraph $(S, \mathcal{E}|_S)$ is complete.

In other words, S is a q-clique if for every $i \neq j \in S$, $(i,j) \in \mathcal{E}$ (or $(j,i) \in \mathcal{E}$), that is, (i,j) is an edge in G.



- Each edge is a 2-clique.
- {1,2,7} is a 3-clique. And so are {2,3,7}, {3,4,7}, {4,5,7}, {5,6,7}, {1,6,7}
- There is no k-clique, with $k \ge 4$.

The Erdös-Rényi class $\mathcal{G}_{n,p}$ Computations in $\mathcal{G}_{n,p}$: *q*-cliques

How to compute the expected number of *q*-cliques?

Image: A matrix and a matrix

3 🕨 🖌 3 🕨

The Erdös-Rényi class $\mathcal{G}_{n,p}$ Computations in $\mathcal{G}_{n,p}$: *q*-cliques

How to compute the expected number of *q*-cliques?

For k = 2 we computed earlier the number of edges, which is also the number of 2-cliques.

We shall compute now the number of 3-cliques: triangles, or 3-cycles.

Let $X_3 : \mathcal{G}_{n,p} \to \mathbb{N}$ be the random variable of number of 3-cliques. Note

the maximum number of 3-cliques is $\begin{pmatrix} n \\ 3 \end{pmatrix}$.

Let S_3 denote the set of all distinct 3-cliques of the complete graph with n vertices, $S_3 = \{(i, j, k) , 1 \le i < j < k \le n\}$. Let

$$1_{(i,j,k)}(G) = \begin{cases} 1 & if \quad (i,j,k) \text{ is a } 3-clique \text{ in } G\\ 0 & if \quad otherwise \end{cases}$$

The Erdös-Rényi class $\mathcal{G}_{n,p}$ Expectation of the number of 3-cliques

Note:
$$X_3 = \sum_{(i,j,k) \in S_3} 1_{(i,j,k)}$$
. Thus
 $\mathbb{E}[X_3] = \sum_{(i,j,k) \in S_3} \mathbb{E}[1_{(i,j,k)}] = \sum_{(i,j,k) \in S_3} Prob((i,j,k) \text{ is a clique}).$

Since $Prob((i, j, k) \text{ is a clique}) = p^3$ we obtain:

$$\mathbb{E}[\text{Number of } 3-\text{cliques}] = \binom{n}{3}p^3 = \frac{n(n-1)(n-2)}{6}p^3.$$

< ロ > < 同 > < 三 > < 三 > 、

э

Random Graphs

Algorithmics

The Erdös-Rényi class $\mathcal{G}_{n,p}$ Number of 3 cliques

Assume we observe a graph G with n vertices and m edges. What would be the expected number N_3 of 3-cliques?

$$\mathbb{E}[X_3|X_2 = m] = \frac{1}{L} \sum_{k=1}^{L} X_3(G_k)$$

where *L* denotes the numbe of graphs with *m* edges and *n* vertices, and G_1, \dots, G_L is an enumeration of these graphs.

3

Random Graphs

Algorithmics

The Erdös-Rényi class $\mathcal{G}_{n,p}$ Number of 3 cliques

Assume we observe a graph G with n vertices and m edges. What would be the expected number N_3 of 3-cliques?

$$\mathbb{E}[X_3|X_2 = m] = \frac{1}{L} \sum_{k=1}^{L} X_3(G_k)$$

where *L* denotes the numbe of graphs with *m* edges and *n* vertices, and G_1, \dots, G_L is an enumeration of these graphs. We approximate:

$$\mathbb{E}[X_3|X_2=m] \approx \mathbb{E}[X_3; p = p_{MLE}(m)]$$

and obtain:

$$E[X_3|X_2=m] \approx \frac{4(n-2)}{3n^2(n-1)^2}m^3$$

イロト イポト イヨト イヨト

The Erdös-Rényi class $\mathcal{G}_{n,p}$ Expectation of the number of *q*-cliques

Let $X_q : \mathcal{G}_{n,p} \to \mathbb{N}$ be the random variable of number of *q*-cliques. Note the maximum number of *q*-cliques is $\binom{n}{q}$. Let S_q denote the set of all distinct *q*-cliques of the complete graph with *n* vertices, $S_q = \{(i_1, i_2, \cdots, i_q), 1 \leq i_1 < i_2 < \cdots < i_q \leq n\}$. Note $|S_q| = \binom{n}{q}$. Let

$$1_{(i_1,i_2,\cdots,i_q)}(G) = \begin{cases} 1 & if \quad (i_1,i_2,\cdots,i_q) \text{ is a } q-clique \text{ in } G \\ 0 & if \quad otherwise \end{cases}$$

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Erdös-Rényi class $\mathcal{G}_{n,p}$ Expectation of the number of *q*-cliques

Expectation of the number of q-cliques

Since
$$X_q = \sum_{(i_1, \dots, i_q) \in S_q} 1_{i_1, \dots, i_q}$$
 and
 $Prob((i_1, \dots, i_q) \text{ is a clique}) = p^{\begin{pmatrix} q \\ 2 \end{pmatrix}}$ we obtain:

$$\mathbb{E}[\textit{Number of } q-\textit{cliques}] = \left(egin{array}{c} n \ q \end{array}
ight) p^{q(q-1)/2}.$$

The Erdös-Rényi class $\mathcal{G}_{n,p}$ Expectation of the number of *q*-cliques

Since $X_q = \sum_{(i_1, \dots, i_q) \in S_q} 1_{i_1, \dots, i_q}$ and $Prob((i_1, \dots, i_q) \text{ is a clique}) = p \begin{pmatrix} q \\ 2 \end{pmatrix}$ we obtain:

$$\mathbb{E}[\text{Number of } q-\text{cliques}]=\left(egin{array}{c}n\\q\end{array}
ight)p^{q(q-1)/2}.$$

Using a similar argument as before, if G has m edges, then

$$\mathbb{E}[X_q|X_2=m]\approx \binom{n}{q}\left(\frac{2m}{n(n-1)}\right)^{q(q-1)/2}$$

< ロ > < 同 > < 三 > < 三 > 、

Computation of Number of Cliques An Iterative Algorithm

We discuss two algorithms to compute X_q : iterative, and adjacency matrix based algorithm.

Framework: we are given a sequence $(G_t)_{t\geq 0}$ of graphs on n vertices, where G_{t+1} is obtained from G_t by adding one additional edge: $G_t = (\mathcal{V}, \mathcal{E}_t), \ \emptyset = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \cdots$ and $|\mathcal{E}_t| = t$. **Iterative Algorithm**: Assume we know $X_q(G_t)$, the number of q-cliques of graph G_t . Then $X_q(G_{t+1}) = X_q(G_t) + D_q(e; G_t)$ where $D_q(e; G_t)$ denotes the number of q-cliques in G_{t+1} formed by the additional edge $e \in \mathcal{E}_{t+1} \setminus \mathcal{E}_t$.

イロト イポト イヨト ・ヨ

Computation of Number of Cliques An Analytic Formula

Laplace Matrix $\Delta = D - A$ contains all connectivity information. *Idea*: Note the (i, j) element of A^2 is

$$(A^2)_{i,j} = \sum_{k=1}^n A_{i,k} A_{k,j} = |\{k : i \sim k \sim j\}|.$$

This means $(A^2)_{i,j}$ is the number of paths of length 2 that connect *i* to *j*. *Remark*: The diagonal elements of $A(A^2 - D)$ represent twice the number of 3-cycles (= 3-cliques) that contain that particular vertex. *Conclusion*:

$$X_3 = \frac{1}{6} trace \{A(A^2 - D)\} = \frac{1}{6} trace(A^3).$$

Computation of Number of Cliques An Analytic Formula

Laplace Matrix $\Delta = D - A$ contains all connectivity information. *Idea*: Note the (i, j) element of A^2 is

$$(A^{2})_{i,j} = \sum_{k=1}^{n} A_{i,k} A_{k,j} = |\{k : i \sim k \sim j\}|.$$

This means $(A^2)_{i,j}$ is the number of paths of length 2 that connect *i* to *j*. *Remark*: The diagonal elements of $A(A^2 - D)$ represent twice the number of 3-cycles (= 3-cliques) that contain that particular vertex. *Conclusion*:

$$X_3 = \frac{1}{6} trace \{A(A^2 - D)\} = \frac{1}{6} trace(A^3).$$

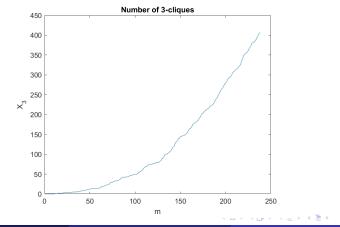
Exercise: Generalize this formula for X_4 .

Random Graphs

Algorithmics ○○●○

Numerical results Graph of X_3 for the BKOFF dataset

Recall the dataset Bernard & Killworth Office. Weighted graph: Ordered m = 238 edges for n = 40 nodes. The plot of X_3 the number of 3-cliques:



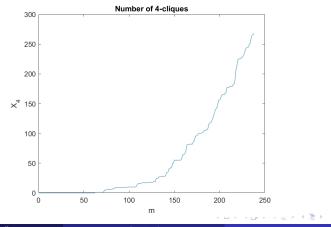
Radu Balan ()

Graphs 1

æ

Numerical results Plot of X₄ for the BKOFF dataset

Weighted graph: Ordered m = 238 edges for n = 40 nodes. The plot of X_4 the number of 4-cliques:



Radu Balan ()

Graphs 1

References

- B. Bollobás, **Graph Theory. An Introductory Course**, Springer-Verlag 1979. **99**(25), 15879–15882 (2002).
- F. Chung, Spectral Graph Theory, AMS 1997.
- F. Chung, L. Lu, The average distances in random graphs with given expected degrees, Proc. Nat.Acad.Sci. 2002.
- R. Diestel, **Graph Theory**, 3rd Edition, Springer-Verlag 2005.
- P. Erdös, A. Rényi, On The Evolution of Random Graphs
- G. Grimmett, **Probability on Graphs. Random Processes on Graphs and Lattices**, Cambridge Press 2010.
- J. Leskovec, J. Kleinberg, C. Faloutsos, Graph Evolution: Densification and Shrinking Diameters, ACM Trans. on Knowl.Disc.Data, $\mathbf{1}(1)$ 2007.