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The Erdos-Rényi class G, ,

Definition

Today we discuss about random graphs. The Erdds-Rényi class G, , of
random graphs is defined as follows.
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The Erdos-Rényi class G, ,

Definition

Today we discuss about random graphs. The Erdds-Rényi class G, , of
random graphs is defined as follows.

Let V denote the set of n vertices, V = {1,2,---,n}, and let G denote the

n
set of all graphs with vertices V. There are exactly 2< 2 ) such graphs.
The probability mass function on G, P : G — [0, 1], is obtained by
assuming that, as random variables, edges are independent from one
another, and each edge occurs with probability p € [0,1]. Thus a graph
G € G with m edges will have probability P(G) given by

P(G):pm(lp)< 2 >_ .

(explain why)
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The Erdos-Rényi class G, ,

Probability space

Formally, G, , stands for the the probability space (G, P) composed of the

set G of all graphs with n vertices, and the probability mass function P
defined above.
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The Erdos-Rényi class G, ,

Probability space

Formally, G, , stands for the the probability space (G, P) composed of the
set G of all graphs with n vertices, and the probability mass function P
defined above.

A reformulation of P: Let G = (V, ) be a graph with n vertices and m
edges and let A be its adjacency matrix. Then:
P(G) = H Prob((i,j) is an edge) H Prob((i,j) is not an edge) =
(ij)e€ (iJ)ge
At
1<i<j<n

where the product is over all ordered pairs (i, /) with 1 < i < j < n. Note:

I{(i>j)71§i<j§n}!=< >&\{(,J)€5}| = > Ay

1<i<j<n
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The Erdos-Rényi class G, ,

Computations in G, p

How to compute the expected number of edges of a graph in G, ;7
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The Erdos-Rényi class G, ,

Computations in G, p

How to compute the expected number of edges of a graph in G, ;7

Let Xzzg,,,,,—>{o,1,---,<
edges of a graph G.

B )1 if (i,j)is edge in G
X2 = Z Lijy » Lip(6) = { 0 if otherwise
1<i<j<n

n

> >} be the random variable of number of

Use linearity and the fact that E[1(; ] = Prob((i,j) € £) = p to obtain:

-1
E[Number of Edges] = ( ,27 > p= n(n2)p
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The Erdos-Rényi class G, ,

MLE of p

Given a realization G of a graph with n vertices and m edges, how to
estimate the most likely p that explains the graph.

Concept: The Maximum Likelihood Estimator (MLE).

In statistics: The MLE of a parameter € given an observation x of a

random variable X ~ px(x;#) is the value € that maximizes the
probability Px(x;6):

OmLe = argmaxg Px(x; 0).

In our case: our observation G has m edges. We know

P(G;p)zp”’(lp)< ? >_ :
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The Erdos-Rényi class G, ,

MLE of p

Lemma

Given a random graph with n vertices and m edges, the MLE estimator of

pis
PMLE = ; = n(n—l)'
2
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The Erdos-Rényi class G, ,

MLE of p

Lemma

Given a random graph with n vertices and m edges, the MLE estimator of

pis
2

Note log(P(G; p)) = mlog(p) + (( ,27 ) — m)log(1 — p) and solve for p:

dlog(P) m <2>_m

b p i_p o

Radu Balan () Graphs 1

Why




Random Graphs
00000@000000

The Erdos-Rényi class G, ,

Method of Moments Estimator for p

An alternative parameter estimation method is the moment matching
method. Given a likelihood function for observed data p(x;#) and a
sequence of observations (xi, x2, - - -, xy), the moment matching method
computes the parameters § € RY by solving the system of equations:

y 1Y
t=1 t=1

(or unbiased estimates of the moments). In particular, for the Erdds-Rényi

class, we match the first moment with the observation: @p =m.
Hence
2m

PmMMm = n(n — 1)7

same as the MLE estimator.
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Cliques

g-cliques

Definition
Given a graph G = (V, &), a subset of g vertices S C V is called a g-clique
if the subgraph (S, &|s) is complete.

In other words, S is a g-clique if for every i # j € S, (i,j) € € (or
(J,i) € &), that is, (i,j) is an edge in G.

1 2

o Each edge is a 2-clique.

Radu Balan () Graphs 1



Random Graphs
000000800000

Cliques

g-cliques

Definition
Given a graph G = (V, &), a subset of g vertices S C V is called a g-clique
if the subgraph (S, &|s) is complete.

In other words, S is a g-clique if for every i # j € S, (i,j) € € (or
(J,i) € &), that is, (i,j) is an edge in G.

1

2
\ o Each edge is a 2-clique.
, ° {1,2,7} is a 3-clique. And so are

N/ {2,3,7},{3,4,7},{4,5,7},{5,6,7},{1,6,7}
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Cliques

g-cliques

Definition
Given a graph G = (V, &), a subset of g vertices S C V is called a g-clique
if the subgraph (S, &|s) is complete.

In other words, S is a g-clique if for every i # j € S, (i,j) € € (or
(J,i) € &), that is, (i,j) is an edge in G.

1

3 o Each edge is a 2-clique.
: o, ° {1,2,7} is a 3-clique. And so are

N\ {2,3,7},{3,4,7},{4,5,7},{5,6,7},{1,6,7}
' ‘ @ There is no k-clique, with k > 4.

Radu Balan () Graphs 1



Random Graphs
0000000e0000

The Erdos-Rényi class G, ,

Computations in G, p: g-cliques

How to compute the expected number of g-cliques?

Radu Balan () Graphs 1



Random Graphs
0000000e0000

The Erdos-Rényi class G, ,

Computations in G, p: g-cliques

How to compute the expected number of g-cliques?
For k = 2 we computed earlier the number of edges, which is also the
number of 2-cliques.

We shall compute now the number of 3-cliques: triangles, or 3-cycles.

Let X3 : G, p — N be the random variable of number of 3-cliques. Note

n

3

Let S3 denote the set of all distinct 3-cliques of the complete graph with n
vertices, S3 = {(/i,j, k), 1 <i<j< k< n}.

Let

the maximum number of 3-cliques is

1 1(G) = 1 if (i,j,k)is a3—clique in G
(i) "] 0 if otherwise
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The Erdos-Rényi class G, ,

Expectation of the number of 3-cliques

Note: X3 = Z(iJ,k)ESg 1(ijk)- Thus

E[X3] = Z E[L(ij.0] = Z Prob((i,j, k) is a clique).
(iJ,k)€Ss (i,j,k)eSs

Since Prob((i, j, k) is a clique) = p3 we obtain:

—1 -2
E[Number of 3 — cliques| = ( g ) pd = n(ng)(n)p3.
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The Erdos-Rényi class G, ,

Number of 3 cliques

Assume we observe a graph G with n vertices and m edges. What would
be the expected number N3 of 3-cliques?

1 L
E[X3|X2 = m] = Z ZXP’(Gk)
k=1

where L denotes the numbe of graphs with m edges and n vertices, and
Gi,- -+, G is an enumeration of these graphs.
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The Erdos-Rényi class G, ,

Number of 3 cliques

Assume we observe a graph G with n vertices and m edges. What would
be the expected number N3 of 3-cliques?

1 L
E[X3|X2 = m] = Z ZXP’(Gk)
k=1

where L denotes the numbe of graphs with m edges and n vertices, and
Gi,- -+, G is an enumeration of these graphs.
We approximate:

E[X3| X2 = m] = E[X3; p = ppre(m)]
and obtain: I 2)
n_
EIXz|I X, = N 3.
[Xs| X = m] 3n?(n— 1)2m
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The Erdos-Rényi class G, ,

Expectation of the number of g-cliques

Let Xg : Gnp — N be the random variable of number of g-cliques. Note

the maximum number of g-cliques is

Let Sq denote the set of all distinct g-cliques of the complete graph with n

vertices, Sq = {(i1, i, -+ ,iq) , 1 < it < i <---<ig < n}. Note
n

’5q‘ = q

Let

1 if (h,i,---,0q) is a q— clique in G
l(il’iz" "i")(G) - { 0 if otherwise
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The Erdos-Rényi class G, ,

Expectation of the number of g-cliques

Since Xg = 2 (i, ig)eS, Lir,ig and
Prob((i1,---,iq) is a clique) = p 2 we obtain:

E[Number of q — cliques] = ( Z > pala—1)/2,
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The Erdos-Rényi class G, ,

Expectation of the number of g-cliques

Since Xg = 2 (i, ig)eS, Lir,ig and
Prob((i1,---,iq) is a clique) = p 2 we obtain:
E[Number of q — cliques] = ( Z > pala—1)/2,

Using a similar argument as before, if G has m edges, then

E[Xq| X2 = m] ~ ( Z > <n(5'171)>q(q1)/2'
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Computation of Number of Cliques
An lterative Algorithm

We discuss two algorithms to compute X;: iterative, and adjacency matrix
based algorithm.

Framework: we are given a sequence (G;)¢>0 of graphs on n vertices,
where G;y1 is obtained from G; by adding one additional edge:

Ge=(V, &), 0=E Cé& C--- and & =t.

Iterative Algorithm: Assume we know X,(G;), the number of g-cliques
of graph G;. Then Xg(Gei1) = Xq(Gt) + Dg(e; Gt) where Dy(e; Gt)
denotes the number of g-cliques in G;y1 formed by the additional edge

e c gt+1 \51_»
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Computation of Number of Cliques

An Analytic Formula

Laplace Matrix A = D — A contains all connectivity information.
Idea: Note the (i, j) element of A? is

(A%);; = Z AikArj = {k i~ k~j}
k=1

This means (A2),-,j is the number of paths of length 2 that connect i to j.
Remark: The diagonal elements of A(A%? — D) represent twice the number

of 3-cycles (= 3-cliques) that contain that particular vertex.
Conclusion:

1 1
X3 = 6trace{A(A2 - D)} = gtrace(A3).
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Computation of Number of Cliques
An Analytic Formula

Laplace Matrix A = D — A contains all connectivity information.
Idea: Note the (i, j) element of A? is

(A%);; = Z AikArj = {k i~ k~j}
k=1

This means (A2),-,j is the number of paths of length 2 that connect i to j.
Remark: The diagonal elements of A(A%? — D) represent twice the number

of 3-cycles (= 3-cliques) that contain that particular vertex.
Conclusion:

1 1
X3 = 6trace{A(A2 - D)} = gtrace(A3).

Exercise: Generalize this formula for Xj.
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Numerical results
Graph of X3 for the BKOFF dataset

Algorithmics
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Recall the dataset Bernard & Killworth Office. Weighted graph: Ordered
m = 238 edges for n = 40 nodes. The plot of X3 the number of 3-cliques:
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Numerical results
Plot of X; for the BKOFF dataset

Weighted graph: Ordered m = 238 edges for n = 40 nodes. The plot of
X4 the number of 4-cliques:
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