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Random Graphs Algorithmics

The Erdös-Rényi class Gn,p
Definition

Today we discuss about random graphs. The Erdös-Rényi class Gn,p of
random graphs is defined as follows.

Let V denote the set of n vertices, V = {1, 2, · · · , n}, and let G denote the

set of all graphs with vertices V. There are exactly 2

(
n
2

)
such graphs.

The probability mass function on G, P : G → [0, 1], is obtained by
assuming that, as random variables, edges are independent from one
another, and each edge occurs with probability p ∈ [0, 1]. Thus a graph
G ∈ G with m edges will have probability P(G) given by

P(G) = pm(1− p)

(
n
2

)
−m

.

(explain why)
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Random Graphs Algorithmics

The Erdös-Rényi class Gn,p
Probability space

Formally, Gn,p stands for the the probability space (G,P) composed of the
set G of all graphs with n vertices, and the probability mass function P
defined above.

A reformulation of P: Let G = (V, E) be a graph with n vertices and m
edges and let A be its adjacency matrix. Then:

P(G) =
∏

(i ,j)∈E
Prob((i , j) is an edge)

∏
(i ,j)6∈E

Prob((i , j) is not an edge) =

=
∏

1≤i<j≤n
pAi,j (1− p)1−Ai,j

where the product is over all ordered pairs (i , j) with 1 ≤ i < j ≤ n. Note:

|{(i , j) , 1 ≤ i < j ≤ n}| =
(

n
2

)
& |{(i , j) ∈ E}| = |E| = m =

∑
1≤i<j≤n

Ai ,j .
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Random Graphs Algorithmics

The Erdös-Rényi class Gn,p
Computations in Gn,p

How to compute the expected number of edges of a graph in Gn,p?

Let X2 : Gn,p → {0, 1, · · · ,
(

n
2

)
} be the random variable of number of

edges of a graph G .

X2 =
∑

1≤i<j≤n
1(i ,j) , 1(i ,j)(G) =

{
1 if (i , j) is edge in G
0 if otherwise

Use linearity and the fact that E[1(i ,j)] = Prob((i , j) ∈ E) = p to obtain:

E[Number of Edges] =
(

n
2

)
p = n(n − 1)

2 p
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Random Graphs Algorithmics

The Erdös-Rényi class Gn,p
MLE of p

Given a realization G of a graph with n vertices and m edges, how to
estimate the most likely p that explains the graph.
Concept: The Maximum Likelihood Estimator (MLE).
In statistics: The MLE of a parameter θ given an observation x of a
random variable X ∼ pX (x ; θ) is the value θ that maximizes the
probability PX (x ; θ):

θMLE = argmaxθPX (x ; θ).

In our case: our observation G has m edges. We know

P(G ; p) = pm(1− p)

(
n
2

)
−m

.
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Random Graphs Algorithmics

The Erdös-Rényi class Gn,p
MLE of p

Lemma
Given a random graph with n vertices and m edges, the MLE estimator of
p is

pMLE = m(
n
2

) = 2m
n(n − 1) .

Why

Note log(P(G ; p)) = mlog(p) + (
(

n
2

)
−m)log(1− p) and solve for p:

dlog(P)
dp = m

p −

(
n
2

)
−m

1− p = 0.
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Random Graphs Algorithmics

The Erdös-Rényi class Gn,p
Method of Moments Estimator for p

An alternative parameter estimation method is the moment matching
method. Given a likelihood function for observed data p(x ; θ) and a
sequence of observations (x1, x2, · · · , xN), the moment matching method
computes the parameters θ ∈ Rd by solving the system of equations:

E[X ] = 1
N

N∑
t=1

xt · · · E[X d ] = 1
N

N∑
t=1

xd
t

(or unbiased estimates of the moments). In particular, for the Erdös-Rényi
class, we match the first moment with the observation: n(n−1)

2 p = m.
Hence

pMM = 2m
n(n − 1) ,

same as the MLE estimator.
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Random Graphs Algorithmics

Cliques
q-cliques

Definition
Given a graph G = (V, E), a subset of q vertices S ⊂ V is called a q-clique
if the subgraph (S, E|S) is complete.

In other words, S is a q-clique if for every i 6= j ∈ S, (i , j) ∈ E (or
(j , i) ∈ E), that is, (i , j) is an edge in G .

Each edge is a 2-clique.

{1, 2, 7} is a 3-clique. And so are
{2, 3, 7}, {3, 4, 7}, {4, 5, 7}, {5, 6, 7}, {1, 6, 7}
There is no k-clique, with k ≥ 4.
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Random Graphs Algorithmics

The Erdös-Rényi class Gn,p
Computations in Gn,p : q-cliques

How to compute the expected number of q-cliques?

For k = 2 we computed earlier the number of edges, which is also the
number of 2-cliques.
We shall compute now the number of 3-cliques: triangles, or 3-cycles.
Let X3 : Gn,p → N be the random variable of number of 3-cliques. Note

the maximum number of 3-cliques is
(

n
3

)
.

Let S3 denote the set of all distinct 3-cliques of the complete graph with n
vertices, S3 = {(i , j , k) , 1 ≤ i < j < k ≤ n}.
Let

1(i ,j,k)(G) =
{

1 if (i , j , k) is a 3− clique in G
0 if otherwise
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Random Graphs Algorithmics

The Erdös-Rényi class Gn,p
Expectation of the number of 3-cliques

Note: X3 =
∑

(i ,j,k)∈S3 1(i ,j,k). Thus

E[X3] =
∑

(i ,j,k)∈S3

E[1(i ,j,k)] =
∑

(i ,j,k)∈S3

Prob((i , j , k) is a clique).

Since Prob((i , j , k) is a clique) = p3 we obtain:

E[Number of 3− cliques] =
(

n
3

)
p3 = n(n − 1)(n − 2)

6 p3.
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Random Graphs Algorithmics

The Erdös-Rényi class Gn,p
Number of 3 cliques

Assume we observe a graph G with n vertices and m edges. What would
be the expected number N3 of 3-cliques?

E[X3|X2 = m] = 1
L

L∑
k=1

X3(Gk)

where L denotes the numbe of graphs with m edges and n vertices, and
G1, · · · ,GL is an enumeration of these graphs.

We approximate:

E[X3|X2 = m] ≈ E[X3; p = pMLE (m)]

and obtain:
E [X3|X2 = m] ≈ 4(n − 2)

3n2(n − 1)2 m3.
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Random Graphs Algorithmics

The Erdös-Rényi class Gn,p
Expectation of the number of q-cliques

Let Xq : Gn,p → N be the random variable of number of q-cliques. Note

the maximum number of q-cliques is
(

n
q

)
.

Let Sq denote the set of all distinct q-cliques of the complete graph with n
vertices, Sq = {(i1, i2, · · · , iq) , 1 ≤ i1 < i2 < · · · < iq ≤ n}. Note

|Sq| =
(

n
q

)
.

Let

1(i1,i2,···,iq)(G) =
{

1 if (i1, i2, · · · , iq) is a q − clique in G
0 if otherwise
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Random Graphs Algorithmics

The Erdös-Rényi class Gn,p
Expectation of the number of q-cliques

Since Xq =
∑

(i1,···,iq)∈Sq 1i1,···,iq and

Prob((i1, · · · , iq) is a clique) = p

(
q
2

)
we obtain:

E[Number of q − cliques] =
(

n
q

)
pq(q−1)/2.

Using a similar argument as before, if G has m edges, then

E[Xq|X2 = m] ≈
(

n
q

)( 2m
n(n − 1)

)q(q−1)/2
.
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Random Graphs Algorithmics

Computation of Number of Cliques
An Iterative Algorithm

We discuss two algorithms to compute Xq: iterative, and adjacency matrix
based algorithm.
Framework: we are given a sequence (Gt)t≥0 of graphs on n vertices,
where Gt+1 is obtained from Gt by adding one additional edge:
Gt = (V, Et), ∅ = E0 ⊂ E1 ⊂ · · · and |Et | = t.
Iterative Algorithm: Assume we know Xq(Gt), the number of q-cliques
of graph Gt . Then Xq(Gt+1) = Xq(Gt) + Dq(e; Gt) where Dq(e; Gt)
denotes the number of q-cliques in Gt+1 formed by the additional edge
e ∈ Et+1 \ Et .
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Random Graphs Algorithmics

Computation of Number of Cliques
An Analytic Formula

Laplace Matrix ∆ = D − A contains all connectivity information.
Idea: Note the (i , j) element of A2 is

(A2)i ,j =
n∑

k=1
Ai ,kAk,j = |{k : i ∼ k ∼ j}|.

This means (A2)i ,j is the number of paths of length 2 that connect i to j .
Remark: The diagonal elements of A(A2 − D) represent twice the number
of 3-cycles (= 3-cliques) that contain that particular vertex.
Conclusion:

X3 = 1
6 trace{A(A2 − D)} = 1

6 trace(A3).

Exercise: Generalize this formula for X4.
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Random Graphs Algorithmics

Numerical results
Graph of X3 for the BKOFF dataset

Recall the dataset Bernard & Killworth Office. Weighted graph: Ordered
m = 238 edges for n = 40 nodes. The plot of X3 the number of 3-cliques:
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Numerical results
Plot of X4 for the BKOFF dataset

Weighted graph: Ordered m = 238 edges for n = 40 nodes. The plot of
X4 the number of 4-cliques:
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