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Dynamical Data Graphs Graph Spectral Analysis

Data Graphs

Today we discuss construction of dynamical data graphs and spectral
analysis. The overarching problem is the following:

Main Problem
Given a graph, discover if it can be explained as a structured data graph,
or just as a random graph.

We shall discuss first how to construct a sequence of nested graphs from a
data set.
Two types of data:

1 Percolation models/Geometric graphs
2 Weighted graphs
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Percolation Models. Geometric graphs

Fix a set of points in Rd . Example, for d = 2:

n = 102 = 100
Uniform (regular) lat-
tice.
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Percolation Models. Geometric graphs

Fix a set of points in Rd . Example, for d = 2:

n = 102 = 100
Nonuniform (irregu-
lar) lattice.

Created by random
perturbation of the
regular lattice.
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Percolation Models. Geometric graphs

Construct the matrix of pairwise distances:

V =
(
‖rk − r j‖

)
1≤k,j≤n

, rk = (xk , yk).

Then sort the set of distances in an ascending order. This way we define
an order on the set of pairs of points. Implicitly this defines an ascending
order on the set of edges. We obtain a sequence of nested graphs

(Gt)t≥0 0 ≤ t ≤ m = n(n − 1)/2

where t indicates the number of edges in the graph Gt .
Thus Gt has n nodes and t edges.
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Percolation Models. Geometric graphs

Play Examples: n = 100, regular/irregular, different types of norms:

‖rk − r j‖2 =
√

(xk − xj)2 + (yk − yj)2

‖rk − r j‖∞ = max(|xk − xj |, |yk − yj |)
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Weighted Graphs. Predictive Graphs

The sequence of nested graphs is obtained by sort the edges according to
their weights: start with the largest weight first, and then pick the next
largest weight, and so on.

On the Bernard& Killworth office
data from: http://vlado.fmf.uni-
lj.si/pub/networks/data/ucinet/ucidata.htm#bkoff.
Generate random 40 points in the
unit square.
See movie: bkoff movie.mp4
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Data Graphs
Data Size

Size matters:
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Data Graphs
Data Size

Size matters:

By Paul Signac - Ophelia2, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=12570159
(L’Hirondelle Steamer on the Seine)
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Data Graphs
Public Datasets

On Canvas you can find links to several public databases:
1 Duke: https://dnac.ssri.duke.edu/datasets.php
2 Stanford: https://snap.stanford.edu/data/
3 Uni. Koblenz: http://konect.uni-koblenz.de/
4 M. Newman (U. Michigan):

http://www-personal.umich.edu/ mejn/netdata/
5 A.L. Barabasi (U. Notre Dame):

http://www3.nd.edu/ networks/resources.htm
6 UCI: https://networkdata.ics.uci.edu/resources.php
7 Google/YouTube: https://research.google.com/youtube8m/
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Spectral Analysis
Basic Properties

Last time we learned how to construct: the Adjacency matrix A, the
Degree matrix D, the (unnormalized symmetric) graph Laplacian matrix
∆ = D − A, the normalized Laplacian matrix ∆̃ = D−1/2∆D−1/2, and the
normalized asymmetric Laplacian matrix L = D−1∆.

We denote: n the number of vertices (also known as the size of the
graph), m the number of edges, d(v) the degree of vertex v , d(i , j) the
distance between vertex i and vertex j (length of the shortest path
connecting i to j), and by D the diameter of the graph (the largest
distance between two vertices = ”longest shortest path”).
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Spectral Analysis
Basic Properties

In this section we summarize spectral properties of the Laplacian matrices.

Theorem
1 ∆ = ∆T ≥ 0, ∆̃ = ∆̃T ≥ 0 are positive semidefinite matrices.
2 eigs(∆̃) = eigs(L) ⊂ [0, 2].
3 0 is always an eigenvalue of ∆, ∆̃, L with same multiplicity. Its

multiplicity is equal to the number of connected components of the
graph.

4 λmax (∆) ≤ 2 maxv d(v), i.e. the lagest eigenvalue of ∆ is bounded
by twice the largest degree of the graph.
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Spectral Analysis
Basic Properties

Theorem

Let 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2 be the eigenvalues of ∆̃ (or L), that is
eigs(∆̃) = {λ0, λ1, · · · , λn−1} = eigs(L). Then:

1
∑n−1

i=0 λi ≤ n.
2
∑n−1

i=0 λi = n −#isolated vertices.
3 λ1 ≤ n

n−1 .
4 λ1 = n

n−1 if and only if the graph is complete (i.e. any two vertices
are connected by an edge).

5 If the graph is not complete then λ1 ≤ 1.
6 If the graph is connected then λ1 > 0. If λi = 0 and λi+1 6= 0 then

the graph has exactly i + 1 connected components.
7 If the graph is connected (no isolated vertices) then λn−1 ≥ n

n−1 .
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Spectral Analysis
Smallest nonnegative eigenvalue

Theorem

Assume the graph is connected. Thus λ1 > 0. Denote by D its diameter
and by dmax , d̄ , dH the maximum, average, and harmonic avergae of the
degrees (d1, · · · , dn):

dmax = max
j

dj , d̄ = 1
n

n∑
j=1

dj ,
1

dH
= 1

n

n∑
j=1

1
dj
.

Then
1 λ1 ≥ 1

nD .
2 Let µ = max1≤j≤n−1 |1− λj |. Then

1 + (n − 1)µ2 ≥ n
dH

(1− (1 + µ)( d̄
dH
− 1)).
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Spectral Analysis
Smallest nonnegative eigenvalue

Theorem

[continued]
3 Assume D ≥ 4. Then

λ1 ≤ 1− 2
√

dmax − 1
dmax

(1− 2
D ) + 2

D .
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Spectral Analysis
Comments on the proof

”Ingredients” and key relations:
1. Let f = (f1, f2, · · · , fn) ∈ Rn be a n-vector. Then:

〈∆f , f 〉 =
∑
x∼y

(fx − fy )2

where x ∼ y if there is an edge between vertex x and vertex y (i.e.
Ax ,y = 1).
This proves positivity of all operators.
2. Last time we showed eigs(∆̃) = eigs(L) because ∆̃ and L are similar
matrices.
3. 0 is an eigenvalue for ∆ with eigenvector 1 = (1, 1, · · · , 1). If multiple
connected components, define such a 1 vector for each component (and 0
on rest).
4. λmax (∆̃) = 1− λmin(D−1/2AD−1/2) ≤ 1 + |λmin(D−1/2AD−1/2)|.

Radu Balan () Graphs Spectral Analysis



Dynamical Data Graphs Graph Spectral Analysis

Spectral Analysis
Comments on the proof - 2

λmax (D−1/2AD−1/2) = max
‖f ‖=1

〈D−1/2AD−1/2f , f 〉 = max
‖f ‖=1

∑
i ,j

Ai ,j
fi√
di

fj√
dj

λmin(D−1/2AD−1/2) = min
‖f ‖=1

〈D−1/2AD−1/2f , f 〉

|λmin,max (D−1/2AD−1/2)| ≤ max
‖f ‖=1

∣∣∣〈D−1/2AD−1/2f , f 〉
∣∣∣ = max

‖f ‖=1

∣∣∣∣∣∑
i,j

Ai,j
fi√
di

fj√
dj

∣∣∣∣∣
Next use Cauchy-Schwartz to get∣∣∣∣∣∣

∑
i ,j

Ai ,j
fi√
di

fj√
dj

∣∣∣∣∣∣ ≤
∑

i

f 2
i
di

∑
j

Ai ,j =
∑

i
f 2
i = ‖f ‖2 = 1.

Thus λmax (∆̃) ≤ 2. Similarly λmax (∆) ≤ 2(maxi di ).

5. If the graph is connected, trace(∆̃) = n =
∑n−1

i=0 λi . Since λ0 = 0 we
get all statements of Theorem 2.
6. Theorem 3 is slightly more complicated (see [2]).
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Spectral Analysis
Special graphs: Cycles and Complete graphs

Cycle graphs: like a regular polygon.
Remark: Adjacency matrices are circulant, and so are ∆, ∆̃ = L.

Then argue the FFT forms a ONB of eigenvectors. Compute the
eigenvalues as FFT of the generating sequence.

Consequence: The normalized Laplacian has the following eigenvalues:
1 For cycle graph on n vertices: λk = 1− cos 2πk

n , 0 ≤ k ≤ n − 1.
2 For the complete graph on n vertices:

λ0 = 0 , λ1 = · · · = λn−1 = n
n − 1 .
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