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Graphs Matrix Analysis AR Processes

From Data to Graphs
Datasets

Datasets diversity:
Social Networks: Set of individuals (”agents”, ”actors”) interacting
with each other (e.g., Facebook, Twitter, joint paper authorship, etc.)
Communication Networks: Devices (phones, laptops, cars)
communicating with each other (emails, spectrum occupancy)
Biological Networks: Macroscale: How animals interact with each
other; Microscale: How proteins interact with each other.
Databases of signals: speech, images, movies; graph relationship
tends to reflect signal similarity: the higher the similarity, the larger
the weight.
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Graphs Matrix Analysis AR Processes

Weighted Graphs
W

The main goal this lecture is to introduce basic concepts of weighted and
undirected graphs, its associated graph Laplacian, and methods to build
weight matrices.
Graphs (and weights) reflect either similarity between nodes, or functional
dependency.

SIMILARITY: Distance, similarity between nodes ⇒ weight wi ,j

PREDICTIVE: How node i is predicted by its nighbor node j ⇒
weight wi ,j
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Graphs Matrix Analysis AR Processes

Definitions
G = (V, E) and G = (V, E , w)

An undirected graph G is given by two pieces of information: a set of
vertices V and a set of edges E , G = (V, E).
A weighted graph has three pieces of information: G = (V, E ,w), the set
of vertices V, the set of edges E , and a weight function w : E → R.

V = {1, 2, 3, 4, 5, 6, 7, 8, 9}
E = {(1, 2), (2, 4), (4, 7),
(6, 7), (1, 5), (5, 6), (5, 7),
(2, 8), (8, 9)}
9 vertices , 9 edges
Undirected graph, edges
are not oriented. Thus
(1, 2) ∼ (2, 1).
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Graphs Matrix Analysis AR Processes

Definitions
G = (V, E)

A weighted graph G = (V, E ,w) can
be directed or undirected depending
whether w(i , j) = w(j , i).
Symmetric weights == Undirected
graphs
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Graphs Matrix Analysis AR Processes

Example of a Weighted Graph
UCINET IV Datasets: Bernard & Killworth Office

Available online at:
http://vlado.fmf.uni-lj.si/pub/networks/data/ucinet/ucidata.htm
Content: Two 40× 40 matrices: symmetric (B) and non-symmetric (C)
Bernard & Killworth, later with the help of Sailer, collected five sets of
data on human interactions in bounded groups and on the actors’ ability
to recall those interactions. In each study they obtained measures of social
interaction among all actors, and ranking data based on the subjects’
memory of those interactions. The names of all cognitive (recall) matrices
end in C, those of the behavioral measures in B.
These data concern interactions in a small business office, again recorded
by an ”unobtrusive” observer. Observations were made as the observer
patrolled a fixed route through the office every fifteen minutes during two
four-day periods. BKOFFB contains the observed frequency of
interactions; BKOFFC contains rankings of interaction frequency as
recalled by the employees over the two-week period.
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Graphs Matrix Analysis AR Processes

Example of a Weighted Graph
UCINET IV Datasets: Bernard & Killworth Office

bkoff.dat
DL
N=40 NM=2
FORMAT = FULLMATRIX DIAGONAL PRESENT
LEVEL LABELS:
BKOFFB
BKOFFC
DATA:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 2 1 0
0 0 4 8 0 3 3 0 1 1 0 0 3 0 0 0 2 1 1 0 0 2 2 0 0 0
0 1 0 0 2 9 0 1 1 0 0 3 0 0
0 4 0 2 1 0 14 0 0 0 1 0 0 1 1 1 0 0 2 0 0 10 0 1 1 0
0 0 0 4 0 1 0 1 8 1 0 0 2 1
· · ·
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Graphs Matrix Analysis AR Processes

Example of a Weighted Graph
UCINET IV Datasets: Bernard & Killworth Office

· · ·
0 0 1 3 0 0 2 0 0 0 0 1 0 5 0 0 0 0 0 0 0 5 0 0 0 0
0 1 1 0 0 0 2 4 5 0 0 0 0 0
0 27 3 36 23 34 14 19 13 9 3 26 21 25 1 8 22 12 11 4 2 37 35 17 5 20
7 33 32 39 38 16 28 30 29 24 6 10 18 31
· · ·
29 38 17 4 31 37 6 35 36 22 17 24 39 20 19 26 12 30 32 28 25 1 18 14 33
34
27 8 9 21 11 10 5 3 2 15 23 16 13 0
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Graphs Matrix Analysis AR Processes

Definitions
Paths

Concept: A path is a sequence of edges where the right vertex of one edge
coincides with the left vertex of the following edge.
Example:

{(1, 2), (2, 4), (4, 7), (7, 5)} =

= {(1, 2), (2, 4), (4, 7), (5, 7)}
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Graphs Matrix Analysis AR Processes

Definitions
Graph Attributes

Graph Attributes (Properties):
Connected Graphs: Graphs where any two distinct vertices can be
connected through a path.

Complete (or Totally Connected) Graphs: Graphs where any two
distinct vertices are connected by an edge.

A complete graph with n vertices has m =
(

n
2

)
= n(n−1)

2 edges.
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Graphs Matrix Analysis AR Processes

Definitions
Graph Attributes

Example:

This graph is not
connected.
It is not complete.
It is the union of two
connected graphs.
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Graphs Matrix Analysis AR Processes

Definitions
Metric

Distance between vertices: For two vertices x , y , the distance d(x , y) is the
length of the shortest path connecting x and y . If x = y then d(x , x) = 0.

In a connected graph the distance between any two vertices is finite.
In a complete graph the distance between any two distinct vertices is 1.
The converses are also true:

1 If ∀x , y ∈ E , d(x , y) <∞ then (V, E) is connected.
2 If ∀x 6= y ∈ E , d(x , y) = 1 then (V, E) is complete.

Radu Balan () Graphs 1



Graphs Matrix Analysis AR Processes

Definitions
Metric

Distance between vertices: For two vertices x , y , the distance d(x , y) is the
length of the shortest path connecting x and y . If x = y then d(x , x) = 0.
In a connected graph the distance between any two vertices is finite.
In a complete graph the distance between any two distinct vertices is 1.

The converses are also true:
1 If ∀x , y ∈ E , d(x , y) <∞ then (V, E) is connected.
2 If ∀x 6= y ∈ E , d(x , y) = 1 then (V, E) is complete.

Radu Balan () Graphs 1



Graphs Matrix Analysis AR Processes

Definitions
Metric

Distance between vertices: For two vertices x , y , the distance d(x , y) is the
length of the shortest path connecting x and y . If x = y then d(x , x) = 0.
In a connected graph the distance between any two vertices is finite.
In a complete graph the distance between any two distinct vertices is 1.
The converses are also true:

1 If ∀x , y ∈ E , d(x , y) <∞ then (V, E) is connected.
2 If ∀x 6= y ∈ E , d(x , y) = 1 then (V, E) is complete.

Radu Balan () Graphs 1



Graphs Matrix Analysis AR Processes

Definitions
Metric

Graph diameter: The diameter of a graph G = (V, E) is the largest
distance between two vertices of the graph:

D(G) = max
x ,y∈V

d(x , y)

Example:

D = 5 = d(6, 9) = d(3, 9)
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Graphs Matrix Analysis AR Processes

Definitions
The Adjacency Matrix

For a graph G = (V, E) the adjacency matrix is the n× n matrix A defined
by:

Ai ,j =
{

1 if (i , j) ∈ E
0 otherwise

Example:

A =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0
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Graphs Matrix Analysis AR Processes

Definitions
The Adjacency Matrix

For undirected graphs the adjacency matrix is always symmetric:

AT = A

For directed graphs the adjacency matrix may not be symmetric.

For weighted graphs G = (V, E ,W ), the weight matrix W is simply given
by

Wi ,j =
{

wi ,j if (i , j) ∈ E
0 otherwise
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Graphs Matrix Analysis AR Processes

Degree Matrix
d(v) and D

For an undirected graph G = (V, E), let dv = d(v) denote the number of
edges at vertex v ∈ V. The number d(v) is called the degree (or valency)
of vertex v . The n-vector d = (d1, · · · , dn)T can be computed by

d = A · 1

where A denotes the adjacency matrix, and 1 is the vector of 1’s,
ones(n,1).
Let D denote the diagonal matrix formed from the degree vector d :
Dk,k = dk , k = 1, 2, · · · , n. D is called the degree matrix.

Key obervation: (D − A) · 1 = 0 always holds. This means the matrix
D − A has a non-zero null-space (kernel), hence it is rank deficient.
Second observation: The dimension of the null-space of D − A equals the
number of connected components in the graph.
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Graphs Matrix Analysis AR Processes

Vertex Degree
Matrix D

For an undirected graph G = (V, E) of n vertices, we denote by D the
n × n diagonal matrix of degrees: Di ,i = d(i).

Example:

D =


2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2
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Graphs Matrix Analysis AR Processes

Graph Laplacian
∆

For a graph G = (V, E) the graph Laplacian is the n × n symmetric matrix
∆ defined by:

∆ = D − A

Example:

∆ =


2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2
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Graphs Matrix Analysis AR Processes

Graph Laplacian
∆
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Graphs Matrix Analysis AR Processes

Graph Laplacian
Intuition

Assume x = [x1, x2, x3, x4, x5]T is a
signal of five components defined over
the graph. The Dirichlet energy E , is
defined as

E =
∑

(i ,j)∈E
(xi−xj)2 =

(x2−x1)2+(x3−x2)2+

+(x4− x3)2 + (x5− x4)2 + (x1− x5)2.

By

regrouping the terms we obtain:

E = 〈∆x , x〉 = xT ∆x = xT (D − A)x
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Graphs Matrix Analysis AR Processes

Graph Laplacian
Example

∆ =



2 −1 0 0 −1 0 0 0 0
−1 3 0 −1 0 0 0 −1 0
0 0 1 0 −1 0 0 0 0
0 −1 0 2 0 0 −1 0 0
−1 0 −1 0 4 −1 −1 0 0
0 0 0 0 −1 2 −1 0 0
0 0 0 −1 −1 −1 3 0 0
0 −1 0 0 0 0 0 2 −1
0 0 0 0 0 0 0 −1 1
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Graphs Matrix Analysis AR Processes

Graph Laplacian
Example

∆ =



2 −1 0 0 −1 0 0 0 0
−1 3 0 −1 0 0 0 −1 0
0 0 1 0 −1 0 0 0 0
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Graphs Matrix Analysis AR Processes

Normalized Laplacians
∆̃

Normalized Laplacian: (using pseudo-inverses)
∆̃ = D−1/2∆D−1/2 = I − D−1/2AD−1/2

∆̃i ,j =


1 if i = j and di > 0 (non− isolated vertex)

− 1√
d(i)d(j)

if (i , j) ∈ E
0 otherwise

Normalized Asymmetric Laplacian:
L = D−1∆ = I − D−1A

Li ,j =


1 if i = j and di > 0 (non− isolated vertex)
− 1

d(i) if (i , j) ∈ E
0 otherwise

Note:
∆D−1 = I − AD−1 = LT ; (D−1)kk = (D−1/2)kk = 0 if d(k) = 0
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Graphs Matrix Analysis AR Processes

Normalized Laplacians
Example

Example:

∆̃ =


1 −0.5 0 0 −0.5
−0.5 1 −0.5 0 0

0 −0.5 1 −0.5 0
0 0 −0.5 1 −0.5
−0.5 0 0 −0.5 1
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Graphs Matrix Analysis AR Processes

Normalized Laplacians
Example

Example:

∆̃ =


1 −0.5 0 0 −0.5
−0.5 1 −0.5 0 0

0 −0.5 1 −0.5 0
0 0 −0.5 1 −0.5
−0.5 0 0 −0.5 1
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Graphs Matrix Analysis AR Processes

Laplacian and Normalized Laplacian for Weighted Graphs
In the case of a weighted graph, G = (V, E ,w), the weight matrix W
replaces the adjacency matrix A.

The other matrices:

D = W · 1 , Dk,k =
∑
j∈V

Wk,j

∆ = D −W , dim ker(D −W ) = number connected components

∆̃ = D−1/2∆D−1/2

L = D−1∆

where D−1/2 and D−1 denote the diagonal matrices:

(D−1/2)k,k =
{ 1√

Dk,k
if Dk,k > 0

0 if Dk,k = 0
, (D−1)k,k =

{ 1
Dk,k

if Dk,k > 0
0 if Dk,k = 0

.
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Graphs Matrix Analysis AR Processes

Laplacian and Normalized Laplacian for Weighted Graphs
Dirichlet Energy

For symmetric (i.e., undirected) weighted graphs, the Dirichlet energy is
defined as

E = 1
2
∑

i ,j∈V
wi ,j |xi − xj |2

Expanding the square and grouping the terms together, the expression
simplifies to∑

i∈V
|xi |2

∑
j

wij −
∑

i ,j∈V
wi ,jxi xj = 〈Dx , x〉 − 〈Wx , x〉 = xT (D −W )x .

Hence:
E = 1

2
∑

i ,j∈V
wi ,j |xi − xj |2 = xT ∆x

where ∆ = D −W is the weighted graph Laplacian.
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Graphs Matrix Analysis AR Processes

Spectral Analysis
Eigenvalues and Eigenvectors

Recall the eigenvalues of a matrix T are the zeros of the characteristic
polynomial:

pT (z) = det(zI − T ) = 0.
There are exactly n eigenvalues (including multiplicities) for a n× n matrix
T . The set of eigenvalues is calles its spectrum.

If λ is an eigenvalue of T , then its associated eigenvector is the non-zero
n-vector x such that Tx = λx .
Recall: If T = T T then T is called a symmetric matrix. Furthermore:

Every eigenvalue of T is real.
There is a set of n eigenvectors {e1, · · · , en} normalized so that the
matrix U = [e1| · · · |en] is orthogonal (UUT = UT U = In) and
T = UΛUT , where Λ is the diagonal matrix of eigenvalues.

Remark. Since det(A1A2) = det(A1)det(A2) and L = D−1/2∆̃D1/2 it
follows that eigs(∆̃) = eigs(L) = eigs(LT ).
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follows that eigs(∆̃) = eigs(L) = eigs(LT ).

Radu Balan () Graphs 1



Graphs Matrix Analysis AR Processes

Spectral Analysis
Eigenvalues and Eigenvectors

Recall the eigenvalues of a matrix T are the zeros of the characteristic
polynomial:

pT (z) = det(zI − T ) = 0.
There are exactly n eigenvalues (including multiplicities) for a n× n matrix
T . The set of eigenvalues is calles its spectrum.
If λ is an eigenvalue of T , then its associated eigenvector is the non-zero
n-vector x such that Tx = λx .
Recall: If T = T T then T is called a symmetric matrix. Furthermore:
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Spectral Analysis
UCINET IV Database: Bernard & Killworth Office Dataset

For the Bernard & Killworth Office dataset (bkoff.dat) dataset we
obtained the following results:
The graph is connected. rank(∆) = rank(∆̃) = rank(L) = 39.

Figure: Adjacency Matrix based Graph
Laplacian

Figure: Weight Matrix based Graph
Laplacian
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3. Auto-Regressive Processes
Consider a time-series (x(t))∞t=−∞ where each sample x(t) can be scalar
or vector. We say that (x(t))t is the output of an Auto-Regressive process
of order p, denoted AR(p), if there are (scalar or matrix) constants
a1, · · · , ap so that

x(t) = a1x(t − 1) + a2x(t − 2) + · · · apx(t − p) + ν(t).

Here (ν(t))t is a different time-series called the driving noise, or the
excitation.

Compare the two type of ’noises’ we have seen so far:
Measurement Noise: yt = Fxt + rt Driving Noise: xt = A(x(t−)) + νt
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Scalar AR(p) process
Given a time-series (xt)t , the least squares estimator of the parameters of
an AR(p) process solves the following minimization problem:

min
a1, · · · , ap

T∑
t=1
|xt − a1x(t − 1)− · · · − apx(t − p)|2

Expanding the square and rearranging the terms we get
aT Ra − 2aT q + ρ(0) where

R =


ρ(0) ρ(−1) · · · ρ(p − 1)
ρ(1) ρ(0) · · · ρ(p − 2)

... . . . ...
ρ(p − 1) ρ(p − 2) · · · ρ(0)

 , q =


ρ(1)
ρ(2)

...
ρ(p − 1)


and ρ(τ) =

∑T
t=1 xtxt−τ is the auto-correlation function.
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Scalar AR(p) process

Computing the gradient for the minimization problem

min
a = [a1, · · · , ap]T

aT Ra − 2aT q + ρ(0)

produces the closed form solution

â = R−1q

that is, the solution of the linear system Ra = q called the Yule-Walker
system.
An efficient adaptive (on-line) solver is given by the Levinson-Durbin
algorithm.
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Multivariate AR(1) Processes

The Multivariate AR(1) process is defined by the linear process:

x(t) = W x(t − 1) + ν(t)

where x(t) is the n-vector describing the state at time t, and ν(t) is the
driving noise vector at time t. The n× n matrix W is the unknown matrix
of coefficients.

In general the matrix W may not have to be symmetric.
However there are cases when we are interested in symmetric AR(1)
processes. One such case is furnished by undirected weighted graphs.
Furthermore, the matrix W may have to satisfy additional constraints.
One such constraint is to have zero main diagonal. Alternate case is for W
to have constant 1 along the main diagonal.
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LSE for Vector AR(1) with zero main diagonal

LS Estimator : min
W ∈ Rn×n

subject to : W = W T

diag(W ) = 0

T∑
t=1
‖x(t)−W x(t − 1)‖2

How to find W : Rewrite the criterion as a quadratic form in variable
z = vec(W ), the independent entries in W . If x(t) ∈ Rn is n-dimensional,
then z has dimension m = n(n − 1)/2:

zT =
[

W12 W13 · · · W1n W23 · · · Wn−1,n
]

Let A(t) denote the n ×m matrix so that W x(t) = A(t)z . For n = 3:

A(t) =

 x(t)2 x(t)3 0
x(t)1 0 x(t)3

0 x(t)1 x(t)2
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LSE for Vector AR(1) with zero main diagonal

Then

J(W ) =
T∑

t=1
(x(t)− A(t)z)T (x(t)− A(t)z) = zT Rz − 2zT q + r0

where

R =
T∑

t=1
A(t)T A(t) , q =

T∑
t=1

A(t)T x(t) , r0 =
T∑

t=1
‖x(t)‖2.

The optimal solution solves the linear system

Rz = q ⇒ z = R−1q.

Then the Least Square estimator W is obtained by reshaping z into a
symmetric n × n matrix of 0 diagonal.
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LSE for Vector AR(1) with unit main diagonal

LS Estimator : min
W ∈ Rn×n

subject to : W = W T

diag(W ) = ones(n, 1)

T∑
t=1
‖x(t)−W x(t − 1)‖2

How to find W : Rewrite the criterion as a quadratic form in variable
z = vec(W ), the independent entries in W . If x(t) ∈ Rn is n-dimensional,
then z has dimension m = n(n − 1)/2:

zT =
[

W12 W13 · · · W1n W23 · · · Wn−1,n
]

Let A(t) denote the n ×m matrix so that W x(t − 1) = A(t)z + x(t − 1).
For n = 3:

A(t) =

 x(t − 1)2 x(t − 1)3 0
x(t − 1)1 0 x(t − 1)3

0 x(t − 1)1 x(t − 1)2
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LSE for Vector AR(1) with unit main diagonal

LS Estimator : min
W ∈ Rn×n

subject to : W = W T

diag(W ) = ones(n, 1)
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W12 W13 · · · W1n W23 · · · Wn−1,n
]

Let A(t) denote the n ×m matrix so that W x(t − 1) = A(t)z + x(t − 1).
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A(t) =

 x(t − 1)2 x(t − 1)3 0
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LSE for Vector AR(1) with unit main diagonal

Then

J(W ) =
T∑

t=1
(x(t)−A(t)z−x(t−1))T (x(t)−A(t)z−x(t−1)) = zT Rz−2zT q+r0

where

R =
T∑

t=1
A(t)T A(t), q =

T∑
t=1

A(t)T (x(t)−x(t−1)), r0 =
T∑

t=1
‖x(t)− x(t − 1)‖2.

The optimal solution solves the linear system

Rz = q ⇒ z = R−1q.

Then the Least Square estimator W is obtained by reshaping z into a
symmetric n × n matrix with 1 on main diagonal.
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