AMSC/MATH 420, Spring 2018 Second Solo Homework: Introduction to the Thread

Due Thursday, February 8

Exercise 1. Compute m_i , v_{ij} , and c_{ij} for each of the following groups of assests based on adjusted daily closing price data with uniform weights:

- (i) VITSX, VFIUX, and VGSLX in 2017.
- (ii) VITSX, VFIUX, and VGSLX in 2016 and 2017.
- (iii) VITSX, VFIUX, VGSLX, Apple, Exxon-Mobil, and UPS in 2017.
- (iv) VITSX, VFIUX, VGSLX, Apple, Exxon-Mobil, and UPS in 2016 and 2017.
 - a. Describe the assets VITSX, VFIUX, and VGSLX. Display m_i as a 3-vector and v_{ij} and c_{ij} as 3×3 -matrices for groups (i) and (ii). Explain the differences between these objects for groups (i) and (ii).
 - b. Compute a complete set of eigenpairs of the 3×3 -matrices $\{v_{ij}\}$ for groups (i) and (ii). What conclusions do you draw from these?
 - c. Display m_i as a 6-vector and v_{ij} and c_{ij} as 6×6 -matrices for groups (iii) and (iv). Explain the differences between these objects for groups (iii) and (iv).
 - d. Compute a complete set of eigenpairs for the 6×6 -matrices $\{v_{ij}\}$ for groups (iii) and (iv). What conclusions do you draw from these?
 - e. Give short explanations for the values of c_{ij} that you computed for groups (iii) and (iv).

Exercise 2. Consider the database BERNARD & KILLWORTH fraternity at: http://vlado.fmf.uni-lj.si/pub/networks/data/ucinet/ucidata.htm The datafile bkfrat.dat includes two 58 × 58 matrices. Use the symmetric matrix BKFRAB.

To answer the following questions you need to write a piece of Matlab code that loads relevant parts of the bkfrat.dat file and formats the data into a 58x58 matrix. Denote this matrix by W. Make sure you load data correctly. W must be a symmetric matrix. Its first line should read like

this:

- a. Write code that computes the weighted graph Laplacian $\Delta = D W$, the normalized symmetric weighted graph Laplacian $\tilde{\Delta} = D^{-1/2} \Delta D^{-1/2}$, the normalized asymmetric weighted graph Laplacian $L = D^{-1} \Delta$.
- b. Compute the eigenvalues of the three Laplacian matrices computed earlier, order them ascendingly, and plot these eigenvalues in three separate plots.
- c. Find if the weighted graph is connected or not. If not, determine the number of connected components.

- d. Set the threshold to $\tau = 20$. Construct a new graph over the set of n = 58 vertices as follows: Vertices *i* and *j* are connected by an edge if an only if $W_{i,j} \geq \tau$. Denote A_{τ} the ajacency matrix of this graph. Determine if the graph is connected, and compute the number of connected components. Let $N_c(\tau)$ denote this number.
- e. Repeat part e) for $\tau = 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0$. In each case determine the number of connected components, $N_c(\tau)$ and then plot N_c as function of τ . What is the largest value of τ so tha graph is still connected?