Math 420, Spring 2018 Fourth Team Homework

due Tuesday, 3 April, 2018

In the following exercises consider the risky assets in groups (A), (B), and (C) of your final project.

Exercise 1. For each asset consider its daily return history $\{(d, r(d))\}_{d=1}^{D}$ over the five year period 2013-2017. Use plots of these histories to explain when each of these assets is a good candidate to be mimiced by an IID model.

Exercise 2. Consider one-year histories of daily share price data for each asset over the years ending December 31 of 2013-2017. Use the unbiased estimators $\hat{\mu}$, $\hat{\xi}$, $\hat{\gamma}$, and $\hat{\theta}$ given by

$$\hat{\mu} = \frac{1}{D} \sum_{d=1}^{D} r(d), \qquad \hat{\xi} = \frac{1}{D-1} \sum_{d=1}^{D} \left(r(d) - \hat{\mu} \right)^2,$$
$$\hat{\gamma} = \frac{1}{D} \sum_{d=1}^{D} x(d), \qquad \hat{\theta} = \frac{1}{D-1} \sum_{d=1}^{D} \left(x(d) - \hat{\gamma} \right)^2,$$

to estimate μ , ξ , γ , and θ given the share price history $\{s(d)\}_{d=0}^{D}$ with

$$r(d) = \left(\frac{s(d)}{s(d-1)} - 1\right), \qquad x(d) = \log\left(\frac{s(d)}{s(d-1)}\right).$$

How do $\hat{\mu}$ and $\hat{\gamma}$ compare as measures of reward over the years considered? How do $\hat{\xi}$ and $\hat{\theta}$ compare as measures of risk?