Math 420, Spring 2018 First Team Homework Risky Assets and Markowitz Portfolios

due Tuesday, 20 February, 2018

Exercise 1. Describe each asset in groups (A), (B), and (C). If it is a fund then describe the assets held by the fund. If it is a company then describe the company. (This information is easily found on the internet. A short paragraph on each is all that you need.)

Exercise 2. For each asset *i* in groups (A), (B), and (C) compute the value-ratio histories $\{\rho_i(d)\}_{d=1}^D$ for the five years 2013-2017. Also compute the value-ratio history $\{\rho_{eq}(d)\}_{d=1}^D$ for the Markowitz portfolio with equal allocations in each asset for the five years 2013-2017. Recall that for every $d = 1, \dots, D$ we have

$$\rho_{\rm eq}(d) = \frac{1}{9} \sum_{i=1}^{9} \rho_i(d) \,.$$

Plot each history as a function of d. (There are ten histories, each with about 1260 entries.) Comment on what you find.

Exercise 3. For each of your nine assets compute

$$\rho_i^{\min} = \min\{\rho_i(d) : d = 1, \cdots, D\},\\rho_i^{\max} = \max\{\rho_i(d) : d = 1, \cdots, D\}.$$

For the Markowitz portfolio with equal allocations in each asset compute

$$\rho_{\rm eq}^{\rm mn} = \min\{\rho_{\rm eq}(d) : d = 1, \cdots, D\},\$$
$$\rho_{\rm eq}^{\rm mx} = \max\{\rho_{\rm eq}(d) : d = 1, \cdots, D\}.$$

Order these ten assets from smallest to largest $\rho^{\rm mx}/\rho^{\rm mn}$. Comment on what you find.

Exercise 4. For the assets in group (A), in groups (A) and (B) combined, and in groups (A), (B), and (C) combined compute

$$\rho_{\rm mn}(d) = \min\{\rho_i(d) : i = 1, \cdots, N\},\$$

$$\rho_{\rm mx}(d) = \max\{\rho_i(d) : i = 1, \cdots, N\},\$$

$$\ell_0(d) = \frac{\rho_{\rm mn}(d)}{\rho_{\rm mx}(d) - \rho_{\rm mn}(d)}.$$

Plot these as a function of d. (There will be nine plots.) Comment on what you find. (Recall that $\ell_0(d)$ is the leverage limit above which some Markowitz portfolios become insolvent.)

Exercise 5. For each of the years ending December 31 of 2013-2017 use one-year histories with uniform weights to compute \mathbf{m} and \mathbf{V} for the risky assets in group (A), in groups (A) and (B) combined, and in groups (A), (B), and (C) combined. (There will be fifteen vectors \mathbf{m} and matrices \mathbf{V} , three for each of the five years.) For each \mathbf{V} compute its eigenpairs. Order the eigenpairs from largest eigenvalue to smallest. Comment on what you find.