Math 420, Spring 2018
 Sixth Team Homework

due Tuesday, 17 April, 2018

Consider the dataset assigned to your project. Consider the SDP program that determines a geometric graph from a set of pairwise distances. Write a Matlab script that performs the following tasks, then execute it on your data file:

1. Use the exponential law $W_{i, j}=\exp \left(-d_{i, j}^{2}\right)$ to convert the weighted graph into a set of pairwise distances.
2. Write a CVX code that solves the SDP problem on the set of pairwise distances computed earlier:

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{trace}(G) \\
\text { subject to } & G=G^{T} \geq 0 \\
& G \cdot 1=0 \\
& \left|\left\langle G e_{i, j}, e_{i, j}\right\rangle-d_{i, j}^{2}\right| \leq \varepsilon,(i, j)
\end{array}
$$

3. Run the CVX code for a few values of ε : start with a large value (e.g. the average values of $d_{i, j}^{2}$) and then decrease by a factor of 2 a few times (up to 10) until you no longer have a feasible solution. Report the last found solution G.
4. Implement the Gram matrix factorization algorithm $G \approx Y Y^{T}$ and run it to obtain Y for $d=2$ and $d=3$.
5. Plot the 2D and 3D geometric graphs.
6. Use the power law $W_{i, j}=\frac{1}{d_{i, j}^{2}}$ instead of the exponential law at 1 , and repeat 1-5.

Your submission should include: 1. Matlab script code (including CVX) that solves the above tasks; 2. A total of four figures: two figures for the exponential law, and two figures for the power law.

