Math 420, Spring 2018 Fourth Team Homework due Tuesday, 3 April, 2018

Exercise 1.

Consider the optimization problem:

 $\begin{array}{ll} \text{minimize} & 2|x_1|+x_2\\ \text{subject to} & x_1^2+x_1x_2+x_2^2\leq 2 \end{array}$

1. Prove the problem is a convex optimization problem.

2. Re-write it as one type of the convex optimization problems we studied in class.

3. Write a CVX code and solve it. Send in the CVX code and the print-out of the results.

Exercise 2.

Let C_1, C_2, C_3 be the following symmetric matrices:

	1	2	3	$, C_2 =$	1	-1	0		1	0	-1]
$C_1 =$	2	1	0	$, C_2 =$	-1	1	0	$, C_3 =$	0	1	0	.
	3	0	$^{-1}$.		0	0	2		1	0	1	

Consider the following optimization problem where the unknown is a 3×3 symmetric matrix $X = X^T \in \mathbb{R}^{3 \times 3}$:

minimize
$$|trace(C_1X)|$$

subject to $trace(C_2X) = 0$
 $trace(C_3X) = 2$

1. Show this problem is a convex optimization problem.

2. Write the problem as a Linear Program.

3. Implement the problem in CVX and solve it. Print out the code and the solutions.