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Introduction. We now consider some settings in which the optimization
problem can be solved analytically. Specifically, we will derive explicit
formulas for the solutions to the maximization problems for the family of
parabolic objectives

Γχp (f) = µrf + m̃Tf − 1
2 fTVf − χ

√
fTVf , (1a)

the family of quadratic objectives

Γχq (f) = µrf + m̃Tf − 1
2

(
µrf + m̃Tf

)2
− 1

2 fTVf − χ
√
fTVf , (1b)

and the family of reasonable objectives

Γχr (f) = log
(
1 + µrf + m̃Tf

)
− 1

2 fTVf − χ
√
fTVf , (1c)

considered over their natural domains of allocations f for unlimited leverage
portfolios with the One Risk-Free Rate model.



In the previous lecture we saw that the maximizer f∗ for such a problem
will correspond to a point (σ∗, µ∗) on the efficient frontier. Moreover, we
saw that (σ∗, µ∗) is the point in the σµ-plane where the level curves of the
objective are tangent to the efficient frontier. While this geometric picture
gave insight into how optimal portfolio allocations arise, we do not yet have
an algorthim by which to compute them.

The explicit formulas derived in this lecture for the maximizer f∗ will confirm
the general picture developed in the previous lecture. They will also give
insight into the relative merits of the different families of objectives in (1).
In particular, the maximizers when χ = 0 give different realizations of
the Kelly Criterion — so-called fortune’s formulas. The maximizers when
χ > 0 will be corresponding fractional Kelly strategies. We will derive and
analyze these formulas after reviewing the efficient frontier for unlimited
leverage portfolios with the One Risk-Free Rate model.



Efficient Frontier. Recall that the frontier for unlimited leverage portfolios
without risk-free assets is the hyperbola in the right-half of the σµ-plane
given by

σ =

√√√√σ 2
mv +

(
µ− µmv

νas

)2

, (2a)

where the so-called frontier parameters σmv, µmv, and νas are given by

1

σ 2
mv

= 1TV−11 , µmv =
1TV−1m

1TV−11
,

ν 2
as = mTV−1m−

(1TV−1m)2

1TV−11
.

(2b)

This so-called frontier hyperbola has vertex (σmv, µmv) and asymptotes

µ = µmv ± νas σ for σ ≥ 0 .

The positive definiteness of V insures that σmv > 0 and νas > 0.



If we introduce risk-free assets and use the One Risk-Free Rate model with
risk-free return µrf < µmv then the efficient frontier becomes the tangent
half-line given by

µ = µrf + νtg σ for σ ≥ 0 , (3a)

where the slope is

νtg = νas

√√√√1 +

(
µmv − µrf

νas σmv

)2

. (3b)

The Sharpe ratio of any portfolio with return mean µ and volatility σ is
defined to be

µ− µrf

σ
.

Clearly νtg is the Sharpe ratio of all portfolios on the efficient frontier (3a).
Moreover, νtg is the largest possible Sharpe ratio for any portfolio.



The efficient frontier (3a) is tangent to the frontier hyperbola (2a) at the
point (σtg, µtg) where

σtg = σmv

√√√√1 +

(
νas σmv

µmv − µrf

)2

, µtg = µmv +
ν 2

as σ
2
mv

µmv − µrf

.

The unique tangency portfolio associated with this point has allocation

ftg =
σ 2

mv

µmv − µrf

V−1(m− µrf1) . (4)

Every portfolio on the efficient frontier (3a) can be viewed as holding a
position in this tangency portfolio and a position in a risk-free asset.

We can select a particular portfolio on this efficient frontier by identifying
an objective function to be maximized. In subsequent sections we derive
and analyze explicit formulas for the maximizers for each family member of
the parabolic, quadratic, and reasonable objectives given in (1).



Parabolic Objectives. First we consider the maximization problem

f∗ = arg max
{

Γχp (f) : f ∈ RN
}
, (5a)

where Γχp (f) is the family of parabolic objectives parametrized by χ ≥ 0
and given by

Γχp (f) = µrf + m̃Tf − 1
2 fTVf − χ

√
fTVf . (5b)

If f 6= 0 then the gradient of Γχp (f) is

∇fΓ
χ

p (f) = m̃−Vf −
χ

σ
Vf ,

where σ =
√
fTVf > 0. By setting this gradient equal to zero we see that

if the maximizer f∗ is nonzero then it satisfies

0 = m̃−
σ∗+ χ

σ∗
Vf∗ ,

where σ∗ =
√
fT∗ Vf∗ > 0.



By solving this equation for f∗ we obtain

f∗ =
σ∗

σ∗+ χ
V−1m̃ . (6)

Because σ∗ =
√
fT∗ Vf∗ we have

σ 2
∗ = fT∗ Vf∗ =

σ 2
∗

(σ∗+ χ)2
m̃TV−1m̃ =

σ 2
∗

(σ∗+ χ)2
ν 2

tg ,

we conclude that σ∗ satisfies

(σ∗+ χ)2 = ν 2
tg .

Because σ∗ > 0 and χ ≥ 0 we see that

0 ≤ χ < νtg , (7)

and that σ∗ is determined by

σ∗+ χ = νtg .



Then the maximizer f∗ given by (6) becomes

f∗ =

(
1−

χ

νtg

)
V−1m̃ . (8)

Remark. Pure Kelly investors take χ = 0, in which case (8) reduces to

f∗ = V−1m̃ . (9)

Formula (9) is often called fortune’s formula in the belief that it is a good
approximation to the Kelly strategy. In this view formula (8) gives an explicit
fractional Kelly strategy for every χ ∈ (0, νtg). However, we will see that
formula (9) gives an allocation that can be far from the Kelly strategy, and
generally leads to overbetting.



The foregoing analysis did not yield a maximzier when χ ≥ νtg. We now
show that in this case f∗ = 0. The key to doing this is the Cauchy inequality
in the form ∣∣∣m̃Tf

∣∣∣ ≤ √m̃TV−1m̃

√
fTVf . (10)

When χ ≥ νtg we use the positive definiteness of V, the fact χ ≥ νtg, and
the above Cauchy inequality to show

Γχp (f) = µrf + m̃Tf − 1
2 fTVf − χ

√
fTVf

≤ µrf + m̃Tf − χ
√
fTVf

≤ µrf + m̃Tf − νtg

√
fTVf

= µrf + m̃Tf −
√
m̃TV−1m̃

√
fTVf

≤ µrf = Γχp (0) .

This implies that f∗ = 0.



Therefore the solution f∗ of the maximization problem (5) is

f∗ =


(

1−
χ

νtg

)
V−1m̃ if χ < νtg ,

0 if χ ≥ νtg .

(11)

This solution lies on the efficient frontier (3a). It allocates fχtg times the
portfolio value in the tangent portfolio ftg given by (4) and 1 − fχtg times
the portfolio value in a risk-free asset, where

f
χ
tg =

(
1−

χ

νtg

)
µmv − µrf

σ 2
mv

. (12)



Quadratic Objectives. Next we consider the maximization problem

f∗ = arg max
{

Γχq (f) : f ∈ RN
}
, (13a)

where Γχq (f) is the family of quadratic objectives parametrized by χ ≥ 0
and given by

Γχq (f) = µrf + m̃Tf − 1
2

(
µrf + m̃Tf

)2
− 1

2 fTVf − χ
√
fTVf . (13b)

If f 6= 0 then the gradient of Γχq (f) is

∇fΓ
χ

q (f) = (1− µrf)m̃− m̃ m̃Tf −Vf −
χ

σ
Vf ,

where σ =
√
fTVf > 0. By setting this gradient equal to zero we see that

if the maximizer f∗ is nonzero then it satisfies

0 = (1− µrf)m̃− m̃ m̃Tf∗ −
σ∗+ χ

σ∗
Vf∗ ,

where σ∗ =
√
fT∗ Vf∗ > 0.



After multiplying this relation by V−1 and bringing the terms involving f∗ to
the left-hand side, we obtain

σ∗+ χ

σ∗
f∗+ V−1m̃ m̃Tf∗ = (1− µrf)V−1m̃ . (14)

Now multiply this by σ∗ m̃T and use the fact that m̃TV−1m̃ = ν 2
tg to obtain

(
σ∗+ χ+ ν 2

tg σ∗
)
m̃Tf∗ = (1− µrf) ν 2

tg σ∗ ,

which implies that

m̃Tf∗ = (1− µrf)
ν 2

tg σ∗

σ∗+ χ+ ν 2
tg σ∗

.

When this expression is placed into (14) we can solve for f∗ to find

f∗ = (1− µrf)
σ∗

σ∗+ χ+ ν 2
tg σ∗

V−1m̃ . (15)



Because σ∗ =
√
fT∗ Vf∗ we have

σ 2
∗ = fT∗ Vf∗ =

(1− µrf)2 σ 2
∗(

(1 + ν 2
tg)σ∗+ χ

)2 m̃T
∗V
−1m̃

=
(1− µrf)2 σ 2

∗(
(1 + ν 2

tg)σ∗+ χ
)2 ν

2
tg ,

we conclude that σ∗ satisfies(
(1 + ν 2

tg)σ∗+ χ
)2

= (1− µrf)2 ν 2
tg .

Because σ∗ > 0 and χ ≥ 0 we see that

0 ≤ χ < (1− µrf) νtg , (16)

and that σ∗ is determined by

(1 + ν 2
tg)σ∗+ χ = (1− µrf) νtg .



Then the maximizer f∗ given by (15) becomes

f∗ =

(
1− µrf −

χ

νtg

)
1

1 + ν 2
tg

V−1m̃ . (17)

Remark. Pure Kelly investors take χ = 0, in which case (17) reduces to

f∗ =
1− µrf

1 + ν 2
tg

V−1m̃ . (18)

Formula (18) differs significantly from formula (9) whenever the Sharpe
ratio νtg is not small. Sharpe ratios are often near 1 and sometimes can
be as large as 3. So which of these should be called fortune’s formula?
Certainly not formula (9)! To see why, set f = V−1m̃ into the quadratic
objective (13b) with χ = 0 to obtain

Γ0
q

(
V−1m̃

)
= µrf + 1

2 ν
2
tg −

1
2

(
µrf + ν 2

tg

)2
,

which can be negative when νtg is near 1. So formula (9) can overbet!



The foregoing analysis did not yield a maximzier when χ ≥ (1− µrf) νtg.
We now show that in this case f∗ = 0. The key to doing this is again
the Cauchy inequality (10). When χ ≥ (1 − µrf) νtg we use the positive
definiteness of V, the fact χ ≥ (1− µrf) νtg, and the Cauchy inequality to
show

Γχq (f) = µrf + m̃Tf − 1
2

(
µrf + m̃Tf

)2
− 1

2 fTVf − χ
√
fTVf

≤ µrf + m̃Tf − 1
2

(
µ2

rf + 2µrf m̃
Tf
)
− χ

√
fTVf

= µrf −
1
2 µ

2
rf + (1− µrf) m̃Tf − χ

√
fTVf

≤ µrf −
1
2 µ

2
rf + (1− µrf) m̃Tf − (1− µrf) νtg

√
fTVf

= µrf −
1
2 µ

2
rf + (1− µrf)

(
m̃Tf −

√
m̃TV−1m̃

√
fTVf

)
≤ µrf −

1
2 µ

2
rf = Γχq (0) .

This implies that f∗ = 0.



Therefore the solution f∗ of the maximization problem (13) is

f∗ =


(

1− µrf −
χ

νtg

)
V−1m̃

1 + ν 2
tg

if χ < (1− µrf) νtg ,

0 if χ ≥ (1− µrf) νtg .

(19)

This solution lies on the efficient frontier (3a). It allocates fχtg times the
portfolio value in the tangent portfolio ftg given by (4) and 1 − fχtg times
the portfolio value in a risk-free asset, where

f
χ
tg =

(
1− µrf −

χ

νtg

)
1

1 + ν 2
tg

µmv − µrf

σ 2
mv

. (20)



Reasonable Objectives. Next we consider the maximization problem

f∗ = arg max
{

Γχr (f) : f ∈ RN , 1 + µrf + m̃Tf > 0
}
, (21a)

where Γχr (f) is the family of reasonable objectives parametrized by χ ≥ 0

and given by

Γχr (f) = log
(
1 + µrf + m̃Tf

)
− 1

2 fTVf − χ
√
fTVf . (21b)

Because Γχr (f)→ −∞ as f approaches the boundary of the domain being
considered in (21a), the maximizer f∗ must lie in the interior of the domain.
If f 6= 0 then the gradient of Γχr (f) is

∇fΓ
χ

r (f) =
1

1 + µ
m̃−Vf −

χ

σ
Vf ,

where µ = µrf + m̃Tf and σ =
√
fTVf > 0.



By setting this gradient equal to zero we see that if the maximizer f∗ is
nonzero then it satisfies

f∗ =
1

1 + µ∗

σ∗
σ∗+ χ

V−1m̃ , (22)

where µ∗ = µrf + m̃Tf∗ and σ∗ =
√
fT∗ Vf∗ > 0.

Because σ∗ =
√
fT∗ Vf∗ we have

σ 2
∗ = fT∗ Vf∗ =

1

(1 + µ∗)2

σ 2
∗

(σ∗+ χ)2
m̃TV−1m̃

=
1

(1 + µ∗)2

σ 2
∗

(σ∗+ χ)2
ν 2

tg .

From this we conclude that µ∗ and σ∗ satisfy

(σ∗+ χ)2 =
ν 2

tg

(1 + µ∗)2
.



Because σ∗ > 0 and χ ≥ 0 we see that

0 ≤ χ <
νtg

1 + µ∗
, (23)

and that we can determine σ∗ in terms of µ∗ from

σ∗+ χ =
νtg

1 + µ∗
.

Then the maximizer f∗ given by (22) becomes

f∗ =
(

1

1 + µ∗
−

χ

νtg

)
V−1m̃ , (24)

Because µ∗ = µrf + m̃Tf∗ we have

µ∗ = µrf + m̃Tf∗ = µrf +

(
1

1 + µ∗
−

χ

νtg

)
m̃TV−1m̃

= µrf +

(
1

1 + µ∗
−

χ

νtg

)
ν 2

tg .



This can be reduced to the quadratic equation(
νtg

1 + µ∗

)2

+

1 + µrf

νtg
− χ

 νtg

1 + µ∗
= 1 ,

which has the unique positive root

νtg

1 + µ∗
= −

1

2

1 + µrf

νtg
− χ

+

√√√√√1 +
1

4

1 + µrf

νtg
− χ

2

. (25)

Then condition (23) is satisfied if and only if

0 <
νtg

1 + µ∗
− χ

= −
1

2

1 + µrf

νtg
+ χ

+

√√√√√1 +
1

4

1 + µrf

νtg
− χ

2

.



This inequality holds if and only if

0 < 1 +
1

4

1 + µrf

νtg
− χ

2

−
1

4

1 + µrf

νtg
+ χ

2

= 1−
1 + µrf

νtg
χ .

This holds if and only if χ satisfies the bounds

0 ≤ χ <
νtg

1 + µrf

. (26)

By using (25) to eliminate µ∗ from the maximizer f∗ given by (24) we find

f∗ =

−1

2

1 + µrf

νtg
+ χ

+

√√√√√1 +
1

4

1 + µrf

νtg
− χ

2
V−1m̃

νtg
.



This becomes

f∗ =

 1

1 + µrf

−
χ

νtg

 1

D

(
χ,

νtg

1 + µrf

)V−1m̃ , (27a)

where

D(χ, y) = 1
2(1 + χy) + 1

2

√
(1− χy)2 + 4y2 . (27b)

Remark. Pure Kelly investors take χ = 0, in which case (27) reduces to

f∗ =
1

1
2(1 + µrf) + 1

2

√
(1 + µrf)2 + 4ν 2

tg

V−1m̃ . (28)

This candidate for fortune’s formula will be compared with the others later.



The foregoing analysis did not yield a maximzier when (1 + µrf)χ ≥ νtg.
We now show that in this case f∗ = 0. The key to doing this is again
the Cauchy inequality (10). When (1 + µrf)χ ≥ νtg we use the positive
definitness of V, the concavity of log(x), the fact (1 + µrf)χ ≥ νtg, and
the Cauchy inequality to show

Γχr (f) = log
(
1 + µrf + m̃Tf

)
− 1

2 fTVf − χ
√
fTVf

≤ log(1 + µrf) +
m̃Tf

1 + µrf

− χ
√
fTVf

≤ log(1 + µrf) +
m̃Tf

1 + µrf

−
νtg

1 + µrf

√
fTVf

= log(1 + µrf) +
1

1 + µrf

(
m̃Tf −

√
m̃TV−1m̃

√
fTVf

)
≤ log(1 + µrf) = Γχr (0) .

This implies that f∗ = 0.



Therefore the solution f∗ of the maximization problem (21) is

f∗ =



(
1

1 + µrf

−
χ

νtg

)
V−1m̃

D

(
χ,

νtg

1 + µrf

) if χ <
νtg

1 + µrf

,

0 if χ ≥
νtg

1 + µrf

,

(29)

where D(χ, y) was defined by (27b).

This solution lies on the efficient frontier (3a). It allocates fχtg times the
portfolio value in the tangent portfolio ftg given by (4) and 1 − fχtg times
the portfolio value in a risk-free asset, where

f
χ
tg =

(
1

1 + µrf

−
χ

νtg

)
1

D

(
χ,

νtg

1 + µrf

) µmv − µrf

σ 2
mv

. (30)



Comparisons. The maximizers for the parabolic, quadratic, and reason-
able objectives are given by (11), (19), and (29) respectively. They are

fp
∗ =


(

1−
χ

νtg

)
V−1m̃ if χ < νtg ,

0 if χ ≥ νtg ,

(31a)

fq
∗ =


(

1− µrf −
χ

νtg

)
V−1m̃

1 + ν 2
tg

if χ < (1− µrf) νtg ,

0 if χ ≥ (1− µrf) νtg ,

(31b)

f r
∗ =



(
1

1 + µrf

−
χ

νtg

)
V−1m̃

D

(
χ,

νtg

1 + µrf

) if χ <
νtg

1 + µrf

,

0 if χ ≥
νtg

1 + µrf

,

(31c)



where D(χ, y) was defined by (27b).



Fact 1. If µrf ∈ [0,1) then fq
∗ is the most conservative of these allocations

and fp
∗ is the most agressive.

Proof. First observe that because µrf ∈ [0,1) we have

1− µrf ≤
1

1 + µrf

≤ 1 .

These inequalities imply that

(1− µrf) νtg ≤
νtg

1 + µrf

≤ νtg , (32)

and that

1− µrf −
χ

νtg
≤

1

1 + µrf

−
χ

νtg
≤ 1−

χ

νtg
. (33)

Each of these inequalities is strict when µrf ∈ (0,1).



Recall from (27b) that

D(χ, y) = 1
2(1 + χy) + 1

2

√
(1− χy)2 + 4y2 . (34)

For every y > 0 we have

∂χD(χ, y) = 1
2y

1−
1− χy√

(1− χy)2 + 4y2

 > 0 ,

whereby D(χ, y) is an strictly increasing function of χ. Hence, for every
χ ∈ [0, y) we have

1 < D(0, y) ≤ D(χ, y) < D(y, y) = 1 + y2 . (35)

Therefore

1 < D

(
χ,

νtg

1 + µrf

)
< 1+

ν 2
tg

(1 + µrf)2
≤ 1+ν 2

tg if χ <
νtg

1 + µrf

. (36)



The inequalities (32) imply that fq
∗ given by (31b) has the smallest critical

value of χ at which it becomes 0, and that fp
∗ given by (31a) has the largest

critical value of χ at which it becomes 0.

The inequalities (33) and (36) imply that the factor multiplying V−1m̃ in
the expression for fq

∗ given by (31b) is smaller than the factor multiplying
V−1m̃ in the expression for f r

∗ given by (31c), which is smaller than the
factor multiplying V−1m̃ in the expression for fp

∗ given by (31a). Hence,
fq
∗ is more conservative than f r

∗, which is more conservative than fp
∗ . �

Remark. The risk-free return µrf is usually much smaller than the Sharpe
ratio νtg. This means that the main differences between the maximizers
given by formulas (31) arise due to their dependence upon νtg.



In practice µrf is often small enough that it can be neglected. By setting
µrf = 0 in (31) we get

fp
∗ =


(

1−
χ

νtg

)
V−1m̃ if χ < νtg ,

0 if χ ≥ νtg ,

(37a)

fq
∗ =


(

1−
χ

νtg

)
V−1m̃

1 + ν 2
tg

if χ < νtg ,

0 if χ ≥ νtg ,

(37b)

f r
∗ =


(

1−
χ

νtg

)
V−1m̃

D(χ, νtg)
if χ < νtg ,

0 if χ ≥ νtg ,

(37c)

where D(χ, y) is given by (34). These all are nonzero for χ < νtg and all
vanish for χ ≥ νtg. We see from (35) that 1 < D(χ, νtg) < 1 + ν 2

tg.



We now use formulas (37b) and (37c) to isolate the dependence of the
maximizers fq

∗ and f r
∗ upon νtg.

Fact 2. For every χ ∈ [0, νtg) we have

1
2 + 1

2

√
1 + 4ν 2

tg

1 + ν 2
tg

≤
D(χ, νtg)

1 + ν 2
tg

< 1 , (38)

where the left-hand side is a strictly decreasing function of νtg.

Proof. By (35) we have

1 + ν 2
tg > D(χ, νtg) ≥ D(0, νtg) = 1

2 + 1
2

√
1 + 4ν 2

tg .

The inequalities (38) follow. The task of proving the left-hand side of (38)
is a strictly decreasing function of νtg is left as an exercise. �



We now use Fact 2 to show that fq
∗ and f r

∗ are nearly equal when νtg is not
too large.

Fact 3. If νtg ≤
2
3 then for every χ ∈ [0, νtg) we have

12
13 ≤

D(χ, νtg)

1 + ν 2
tg

< 1 . (39)

Proof. By the monotonicity asserted in Fact 2 if νtg ≤
2
3 then

1
2 + 1

2

√
1 + 4ν 2

tg

1 + ν 2
tg

≥
1
2 + 1

2 ·
5
3

1 + 4
9

=
4
3

13
9

= 12
13 .

Then (39) follows from inequality (38) of Fact 2. �

Remark. This fact implies that there is little difference between fq
∗ and f r

∗
when νtg ≤

2
3 .



Remark. A pure Kelly investor would set χ = 0, in which case (31) gives

fp
∗ = V−1m̃ , (40a)

fq
∗ =

1− µrf

1 + ν 2
tg

V−1m̃ , (40b)

f r
∗ =

1
1
2(1 + µrf) + 1

2

√
(1 + µrf)2 + 4ν 2

tg

V−1m̃ . (40c)

This is the case for which the difference between fq
∗ and f r

∗ is greatest. To
get a feel for this difference, when µrf = 0 and νtg =

√
2 these become

fq
∗ = 1

3 V−1m̃ , f r
∗ = 1

2 V−1m̃ ,

while when µrf = 0 and νtg =
√

6 these become

fq
∗ = 1

7 V−1m̃ , f r
∗ = 1

3 V−1m̃ .

This suggests that these differences might become significant for Sharpe
ratios greater than 2.



What We Have Learned. Here are some insights that we have gained.

1. The Sharpe ratio νtg and the caution coefficient χ play a large role in
determining the optimal allocation. In particular, when χ ≥ νtg the optimal
allocation is entirely in risk-free assets. The risk-free return µrf plays a
much smaller role in determining the optimal allocation.

2. For any choice of χ the maximizer for the quadratic objective is more
conservative than the maximizer for the reasonable objective, which is
more conservative than the maximizer for the parabolic objective.

3. The maximizer for a parabolic objective is agressive and will overbet
when the Sharpe ratio νtg is not small.

4. The maximizers for quadratic and reasonable objectives are close when
the Sharpe ratio νtg is not large. As χ approaches νtg, the maximizers for
the quadratic and reasonable objectives will become closer.



5. We will have greater confidence in the computed Sharpe ratio νtg when
the tangency portfolio lies towards the “nose” of the efficient frontier. This
translates into greater confidence in the maximizers for the quadratic and
reasonable objectives.

6. Analyzing the maximizers for both the quadratic and reasonable objec-
tives gave greater insights than analyzing each of them separately. To-
gether they are fortune’s formulas.


