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Introduction. Because the value of the associated portfolio is

Π(d) = Π(0) exp(Y (d)d) , where Y (d) =
1

d

d∑
d′=1

X(d′) ,

we see that Y (d) is the growth rate of the portfolio at day d.

The Law of Large Numbers implies that Y (d) is likely to approach γ as
d→∞. The Kelly criterion stated that investors whose goal is to maximize
the value of their portfolio over an extended period should maximize γ.
More precisely, it suggests that such investors should select an allocation
f that maximizes γ̂(f).



The suggestion to maximize γ̂(f) rests upon the assumptions that γ̂(f) is
accurate and that the investor will hold the portfolio for an extended period.
The first assumption is foolhardy. The second might be a suitable assump-
tion for most young investors, but not for those older investors who depend
upon their portfolios for their income.

The development of objective functions that are better suited for more cau-
tious investors requires more information about Y (d) than the Law of Large
Numbers provides. However, this additional information can be estimated
with the aid of the Central Limit Theorem.



Central Limit Theorem. Let {X(d)}∞d=1 be any sequence of IID random
variables drawn from a probability density p(X) with mean γ and variance
θ > 0. Let {Y (d)}∞d=1 be the sequence of random variables defined by

Y (d) =
1

d

d∑
d′=1

X(d′) for every d = 1, · · · ,∞ .

Recall that

Ex(Y (d)) = γ , Var(Y (d)) =
θ

d
.

Now let {Z(d)}∞d=1 be the sequence of random variables defined by

Z(d) =
Y (d)− γ√

θ/d
for every d = 1, · · · ,∞ .

These random variables have been normalized so that

Ex(Z(d)) = 0 , Var(Z(d)) = 1 .



The Central Limit Theorem states that as d→∞ the limiting distribution of
Z(d) will be the mean-zero, variance-one normal distribution. Specifically,
for every ζ ∈ R it implies that

lim
d→∞

Pr
{
Z(d) ≥ −ζ

}
=
∫ ∞
−ζ

1√
2π

e−
1
2Z

2
dZ .

This can be expressed in terms of Y (d) as

lim
d→∞

Pr
{
Y (d) ≥ γ − ζ

√
θ/d

}
=
∫ ∞
−ζ

1√
2π

e−
1
2Z

2
dZ . (1)

Remark. The power of the Central Limit Theorem is that it assumes so little
about the underlying probability density p(X). Specifically, it assumes that

∫ ∞
−∞

X2p(X) dX <∞ ,

and that

0 < θ =
∫ ∞
−∞

(X − γ)2p(X) dX , where γ =
∫ ∞
−∞

X p(X) dX .



Remark. The Central Limit Theorem does not estimate how fast this limit
is approached. Any such estimate would require additional assumptions
about the underlying probability density p(X). Roughly speaking, the rate
of convergence will be slower when p(X) is further from a normal density.

Remark. In an IID model of a portfolio Y (d) is the growth rate of the port-
folio when it is held for d days. The Central Limit Theorem shows that as
d→∞ the values of Y (d) become strongly peak around γ. This behavior
seems to be consistent with the idea that a reasonable approach towards
portfolio management is to select f to maximize the estimator γ̂(f). How-
ever, by taking ζ = 0 we see that the Central Limit Theorem implies

lim
d→∞

Pr
{
Y (d) ≥ γ

}
= 1

2 .

This shows that in the long run the growth rate of a portfolio will exceed γ
with a probability of only 1

2. A cautious investor might want the portfolio to
exceed the optimized growth rate with a higher probability.



Growth Rate Exceeded with Probability. We consider the family of ob-
jectives Γ(λ, T, f) that is the growth rate exceeded by a portfolio with prob-
ability λ after time T in trading days. Here we will use the Central Limit
Theorem to construct an estimator Γ̂(λ, T, f) of this quantity. We do this
by assuming that T is large enough that we can use the approximation

Pr
{
Y (T ) ≥ γ − ζ

√
θ/T

}
≈
∫ ∞
−ζ

1√
2π

e−
1
2Z

2
dZ . (2)

Given any probability λ ∈ (0,1), we set

λ =
∫ ∞
−ζ

1√
2π

e−
1
2Z

2
dZ =

∫ ζ
−∞

1√
2π

e−
1
2Z

2
dZ ≡ N(ζ) .

Our approximation can then be expressed as

Pr

{
Y (d) ≥ γ −

ζ√
T

√
θ

}
≈ λ , (3)

where ζ = N−1(λ).



For a Markowitz portfolio with allocation f we can replace γ and θ in the
above approximation by the estimators γ̂(f) and θ̂(f) given by

γ̂(f) =
D∑
d=1

w(d)x(d, f) ,

θ̂(f) =
1

1− w̄

D∑
d=1

w(d)
(
x(d, f)− γ̂(f)

)2
,

(4)

where x(d, f) = log(1 + r(d, f)) with

r(d, f) = µrf(f)
(
1− 1Tf

)
+ r(d)Tf .

We would then want select f so as to maximize the objective

Γ̂(λ, T, f) = γ̂(f)−
N−1(λ)√

T

√
θ̂(f) . (5)



Remark. The only new assumption we have made in order to construct
this objective is that T is large enough for the Central Limit Theorem to
yield a good approximation of the distribution of growth rates. Investors
often choose T to be the interval at which the portfolio will be rebalanced,
regardless of whether T is large enough for the approximation to be valid.
If an investor plans to rebalance once a year then T = 252, twice a year
then T = 126, and four times a year then T = 63. The smaller T , the
less likely it is that the Central Limit Theorem approximation is valid.

The idea now will be to select the admissible Markowitz allocation f that
maximizes Γ̂(λ, T, f) given a choice of λ and T by the investor. In other
words, the objective will be to maximize the growth rate that will be ex-
ceeded by the portfolio with probability λ when it is held for T trading days.
Because 1−λ is the fraction of times the investor is willing to experience a
downside tail event, the choice of λ characterizes how cautious the investor
feels. More cautious investors will select a higher λ.



Remark. The caution of an investor generally increases with age. Re-
tirees whose portfolio provides them with an income that covers much of
their living expenses will generally be extremely cautious. Investors within
ten years of retirement will be fairly cautious because they have less time
for their portfolio to recover from any economic downturn. In constrast,
young investors can be less cautious because they have more time to ex-
perience economic upturns and because they are typically far from their
peak earning capacity.

Remark. The caution of an investor should also depend on a careful read-
ing of economic factors or an analysis of the historical data. For example,
if the historical data shows evidence of a bubble then an investor should
be more cautious.



An investor can simply select ζ = N−1(λ) such that λ is a probability that
reflects his or her caution. For example, based on the tabulations

N(0) = .5000 , N
(

1
4

)
≈ .5987 , N

(
1
2

)
≈ .6915 , N

(
3
4

)
≈ .7734 ,

N(1) ≈ .8413 , N
(

5
4

)
≈ .8944 , N

(
3
2

)
≈ .9332 , N

(
7
4

)
≈ .9505 ,

an investor who is willing to experience a downside tail event roughly

once every two years might select ζ = 0 ,

twice every five years might select ζ = 1
4 ,

thrice every ten years might select ζ = 1
2 ,

twice every nine years might select ζ = 3
4 ,

once every six years might select ζ = 1 ,

once every ten years might select ζ = 5
4 ,

once every fifteen years might select ζ = 3
2 ,

once every twenty years might select ζ = 7
4 .



Remark. The Central Limit Theorem approximation generally degrades
badly as ζ increases because p(X) typically decays much more slowly
than a normal density asX → −∞. Therefore it is a bad idea to pick ζ > 2

based on this approximation. Fortunately, ζ = 7
4 already corresponds to a

fairly conservative investor.

Remark. You should pick a larger value of ζ whenever your analysis of the
historical data gives you less confidence either in the calibration of m and
V or in the validity of an IID model.

Remark. This approach is similar to something in financal management
called value at risk. The finance problem is much harder because the time
horizon T considered there is much shorter, typically on the order of days.
In that setting the Central Limit Theorem approximation is certainly invalid.



Other Estimators of These Objectives. We now use the estimator Γ̂(λ, T, f)

to derive new estimators of Γ(λ, T, f) in terms of sample estimators of the
return mean and variance given by

µ̂(f) = µrf(f)
(
1− 1Tf

)
+ mTf , fTVf , (6)

where m and V are given by

m =
D∑
d=1

w(d)r(d) ,

V =
D∑
d=1

w(d)
(
r(d)−m

)(
r(d)−m

)T
.

(7)

These new return mean-variance estimators of Γ(λ, T, f) will allow us to
work within the framework of Markowitz portfolio theory.



Recall that µ̂(f) is the sample mean of of the history {r(d, f)}Dd=1 and that

r(d, f)− µ̂(f) = r̃(d)Tf ,

where r̃(d) = r(d) −m. In words, r̃(d) is the deviation of r(d) from its
sample mean m. Then we can write

x(d, f) = log
(
1 + r(d, f)

)
= log

(
1 + µ̂(f)

)
+ log

(
1 +

r̃(d)Tf

1 + µ̂(f)

)
.

(8)

We used this expression in the last lecture to derive several estimators of
γ̂(f). We now use it to derive several estimators of θ̂(f).



We use the first-order Taylor approximation log(1 + r) ≈ r in the second
term of (8) to obtain

x(d, f) ≈ log
(
1 + µ̂(f)

)
+

r̃(d)Tf

1 + µ̂(f)
. (9)

This yields the approximation

θ̂(f) =
1

1− w̄

D∑
d=1

w(d)
(
x(d, f)− γ̂(f)

)2

≈
1

1− w̄
fTVf

(1 + µ̂(f))2
,

which leads to the estimator

θ̂t(f) =
1

1− w̄
fTVf

(1 + µ̂(f))2
. (10)

Like the second-order estimator γ̂s(f), this estimator is not well-behaved.
The simplest thing to do is drop the µ̂(f) term in the denominator.



We introduce the caution coefficient χ by

χ =
1√

1− w̄
ζ√
T
. (11)

When our approximation is combined with the reasonable estimator γ̂r(f)

we obtain

Γ̂r(χ, f) = log
(
1 + µ̂(f)

)
− 1

2f
TVf − χ

√
fTVf over 1 + µ̂(f) > 0 .

(12)
When it is combined with the quadratic estimator γ̂q(f) we obtain

Γ̂q(χ, f) = µ̂(f)− 1
2µ̂(f)2 − 1

2f
TVf − χ

√
fTVf over µ̂(f) < 1 .

(13)
When it is combined with the parabolic estimator γ̂p(f) we obtain

Γ̂p(χ, f) = µ̂(f)− 1
2f

TVf − χ
√
fTVf . (14)


