Portfolios that Contain Risky Assets 14 Kelly Objectives for Markowitz Portfolios

C. David Levermore
University of Maryland, College Park

Math 420: *Mathematical Modeling*April 12, 2017 version
© 2017 Charles David Levermore

Portfolios that Contain Risky Assets Part II: Stochastic Models

- 11. Independent, Identically-Distributed Models
- 12. Growth Rate Mean and Variance Estimators
- 13. Law of Large Numbers (Kelly) Objectives
- 14. Kelly Objectives for Markowitz Portfolios
- 15. Central Limit Theorem Objectives
- 16. Optimization of Mean-Variance Objectives
- 17. Fortune's Formulas
- 18. Utility Function Objectives

Portfolios 14. Kelly Objectives for Markowitz Portfolios

- 1. Introduction
- 2. Sample Estimators of the Growth Rate Mean
- 3. Without Risk-Free Assets
- 4. Other Estimators of the Growth Rate Mean
- 5. With Risky-Free Assets

Portfolios 14. Kelly Objectives for Markowitz Portfolios

Introduction. We now apply the Kelly criterion to classes of Markowitz portfolios. Given a daily return history $\{\mathbf{r}(d)\}_{d=1}^D$ on N risky assets, a daily return μ_{Si} on a safe investment, and a daily return μ_{Cl} on a credit line, the Markowitz portfolio with allocation \mathbf{f} in risky assets has the daily return history $\{r(d,\mathbf{f})\}_{d=1}^D$ where

$$r(d, \mathbf{f}) = \mu_{\mathsf{rf}}(\mathbf{f}) \left(1 - \mathbf{1}^{\mathsf{T}} \mathbf{f} \right) + \mathbf{r}(d)^{\mathsf{T}} \mathbf{f}, \tag{1}$$

with

$$\mu_{\mathsf{rf}}(\mathbf{f}) = \begin{cases} \mu_{\mathsf{Si}} & \text{if } \mathbf{1}^{\mathsf{T}} \mathbf{f} \leq 1, \\ \mu_{\mathsf{CI}} & \text{if } \mathbf{1}^{\mathsf{T}} \mathbf{f} > 1. \end{cases} \tag{2}$$

The *one risk-free rate model* for risk-free assets assumes $0 < \mu_{\rm Si} = \mu_{\rm Cl}$. The *two risk-free rate model* for risk-free assets assumes $0 < \mu_{\rm Si} < \mu_{\rm Cl}$. Portfolios *without risk-free assets* are modeled by adding the constraint $1^{\rm T} {\bf f} = 1$.

We will consider only classes of *solvent Markowitz portfolios*. This means that we require $f \in \Omega^+$ where

$$\Omega^{+} = \left\{ \mathbf{f} \in \mathbb{R}^{N} : 1 + r(d, \mathbf{f}) > 0 \ \forall d \right\}. \tag{3}$$

It can be shown that $r(d, \mathbf{f})$ is a concave function of \mathbf{f} over \mathbb{R}^N for every d. This means that for every d and every \mathbf{f}_0 , $\mathbf{f}_1 \in \mathbb{R}^N$ we can show that

$$r(d, \mathbf{f}_t) \ge (1 - t) r(d, \mathbf{f}_0) + t r(d, \mathbf{f}_1)$$
 for every $t \in [0, 1]$,

where $\mathbf{f}_t = (1 - t) \mathbf{f}_0 + t \mathbf{f}_1$. This concavity implies that for every \mathbf{f}_0 , $\mathbf{f}_1 \in \Omega^+$ and every $t \in [0, 1]$ we have

$$1 + r(d, \mathbf{f}_t) \ge 1 + (1 - t) r(d, \mathbf{f}_0) + t r(d, \mathbf{f}_1)$$

= $(1 - t) (1 + r(d, \mathbf{f}_0)) + t (1 + r(d, \mathbf{f}_1)) \ge 0$,

whereby $f_t \in \Omega^+$. Therefore Ω^+ is a convex set.

The solvent Markowitz portfolio with allocation f has the growth rate history $\{x(d, \mathbf{f})\}_{d=1}^{D}$ where

$$x(d, \mathbf{f}) = \log(1 + r(d, \mathbf{f})). \tag{4}$$

Notice that the growth rate history is only defined for solvent portfolios.

Because $r(d, \mathbf{f})$ is a concave function over $\mathbf{f} \in \mathbb{R}^N$ for every d while $\log(1+r)$ is an increasing, strictly concave function of r over $r \in (-1, \infty)$, we can show that $x(d, \mathbf{f})$ is a concave function of \mathbf{f} over Ω^+ for every d. Indeed, for every \mathbf{f}_0 , $\mathbf{f}_1 \in \Omega^+$ and every $t \in [0, 1]$ we have

$$x(d, \mathbf{f}_{t}) = \log(1 + r(d, \mathbf{f}_{t}))$$

$$\geq \log(1 + (1 - t) r(d, \mathbf{f}_{0}) + t r(d, \mathbf{f}_{1}))$$

$$\geq (1 - t) \log(1 + r(d, \mathbf{f}_{0})) + t \log(1 + r(d, \mathbf{f}_{1}))$$

$$= (1 - t) x(d, \mathbf{f}_{0}) + t x(d, \mathbf{f}_{1}).$$

Sample Estimators of the Growth Rate Mean. If we use an IID model for the class of solvent Markowitz portfolios then the Kelly criterion says that for maximal long-term growth we should pick $f \in \Omega^+$ to maximize the growth rate mean $\gamma(f)$ of the underlying probability distribution for growth rates. Because we do not know $\gamma(f)$, the best we can do is to maximize an estimator for $\gamma(f)$. Here we explore sample esitmators of $\gamma(f)$.

Given and allocation f and weights $\{w(d)\}_{d=1}^{D}$ such that

$$w(d) > 0 \quad \forall d, \qquad \sum_{d=1}^{D} w(d) = 1,$$
 (5)

the growth rate history $\{x(d, \mathbf{f})\}_{d=1}^D$ yields the sample estimator

$$\widehat{\gamma}(\mathbf{f}) = \sum_{d=1}^{D} w(d) x(d, \mathbf{f}) = \sum_{d=1}^{D} w(d) \log(1 + r(d, \mathbf{f})).$$
 (6)

This is clearly defined for every $f \in \Omega^+$.

Here are some facts about $\hat{\gamma}(\mathbf{f})$ considered as a function over Ω^+ .

Fact 1.
$$\hat{\gamma}(0) = \log(1 + \mu_{si})$$
.

Fact 2. $\hat{\gamma}(\mathbf{f})$ is concave over Ω^+ .

Fact 3. For every $f \in \Omega^+$ we have the bound

$$\widehat{\gamma}(\mathbf{f}) \le \log(1 + \widehat{\mu}(\mathbf{f})),$$
 (7)

where $\hat{\mu}(\mathbf{f})$ is the sample estimator of the return mean given by

$$\widehat{\mu}(\mathbf{f}) = \sum_{d=1}^{D} w(d) \, r(d, \mathbf{f}) = \mu_{\mathsf{rf}}(\mathbf{f}) \Big(\mathbf{1} - \mathbf{1}^{\mathsf{T}} \mathbf{f} \Big) + \sum_{d=1}^{D} w(d) \, \mathbf{r}(d)^{\mathsf{T}} \mathbf{f}$$

$$= \mu_{\mathsf{rf}}(\mathbf{f}) \Big(\mathbf{1} - \mathbf{1}^{\mathsf{T}} \mathbf{f} \Big) + \mathbf{m}^{\mathsf{T}} \mathbf{f} . \tag{8}$$

Remark. Fact 1 shows that bound (7) of **Fact 3** is an equality when f = 0.

Proof. Definitions (1) and (2) of $r(d, \mathbf{f})$ and $\mu_{rf}(\mathbf{f})$ respectively show that

$$r(d,0) = \mu_{\mathsf{rf}}(0) (1 - 1^{\mathsf{T}}0) + \mathbf{r}(d)^{\mathsf{T}}0 = \mu_{\mathsf{rf}}(0) = \mu_{\mathsf{si}}.$$

Then definition (6) of $\widehat{\gamma}(\mathbf{f})$ yields

$$\begin{split} \widehat{\gamma}(\mathbf{0}) &= \sum_{d=1}^D w(d) \, \log \big(1 + r(d, \mathbf{0})\big) \\ &= \sum_{d=1}^D w(d) \, \log (1 + \mu_{\mathrm{Si}}) = \log (1 + \mu_{\mathrm{Si}}) \, . \end{split}$$

Therefore we have proved **Fact 1**.

Proof. Because $x(d, \mathbf{f})$ is a concave function of \mathbf{f} over Ω^+ for every d, and because definition (6) shows that $\widehat{\gamma}(\mathbf{f})$ is a linear combination of these concave functions with positive coefficients, it follows that $\widehat{\gamma}(\mathbf{f})$ is concave over Ω^+ . This proves **Fact 2**.

The proof of **Fact 3** uses the *Jensen inequality*. This inequality states that if the function g(z) is convex (concave) over an interval [a,b], the points $\{z(d)\}_{d=1}^D$ all lie within [a,b], and the nonnegative weights $\{w(d)\}_{d=1}^D$ sum to one, then

$$g(\overline{z}) \le \overline{g(z)} \qquad \left(\overline{g(z)} \le g(\overline{z})\right),$$
 (9)

where

$$\bar{z} = \sum_{d=1}^{D} z(d) w(d), \qquad \overline{g(z)} = \sum_{d=1}^{D} g(z(d)) w(d).$$

For example, if we take $g(z)=z^p$ for some p>1, so that g(z) is convex over $[0,\infty)$, and we take z(d)=w(d) for every d then because the points $\{w(d)\}_{d=1}^D$ all lie within [0,1], the Jensen inequality yields

$$\bar{w}^p = \left(\sum_{d=1}^D w(d)^2\right)^p \le \sum_{d=1}^D w(d)^{p+1} = \overline{w^p}.$$

The Jensen inequality can be proved for the case when g(z) is convex and differentiable over [a, b] by starting from the inequality

$$g(z) \ge g(\overline{z}) + g'(\overline{z})(z - \overline{z})$$
 for every $z \in [a, b]$.

This inequality simply says that the tangent line to the graph of g at \bar{z} lies below the graph of g over [a,b]. By setting z=z(d) in the above inequality, multiplying both sides by w(d), and summing over d we obtain

$$\sum_{d=1}^{D} g(z(d)) w(d) \ge \sum_{d=1}^{D} \left(g(\bar{z}) + g'(\bar{z})(z(d) - \bar{z}) \right) w(d)$$

$$= g(\bar{z}) \sum_{d=1}^{D} w(d) + g'(\bar{z}) \left(\sum_{d=1}^{D} \left(z(d) - \bar{z} \right) w(d) \right).$$

The Jensen inequality then follows from the definitions of \bar{z} and g(z).

Remark. There is an integral version of the Jensen inequality that we do not give here because we do not need it.

Proof of Fact 3. Let $f \in \Omega^+$. Then the points $\{r(d, f)\}_{d=1}^D$ all lie within an interval $[a, b] \subset (-1, \infty)$. Because $\log(1+r)$ is a concave function of r over $(-1, \infty)$, the Jensen inequality (9) and definition (8) of $\widehat{\mu}(f)$ yield

$$\widehat{\gamma}(\mathbf{f}) = \sum_{d=1}^{D} w(d) \log(1 + r(d, \mathbf{f}))$$

$$\leq \log\left(1 + \sum_{d=1}^{D} w(d) r(d, \mathbf{f})\right) = \log(1 + \widehat{\mu}(\mathbf{f})).$$

This establishes the upper bound (7), whereby **Fact 3** is proved.

Remark. Under very mild assumptions on the return history $\{\mathbf{r}(d)\}_{d=1}^D$ that are always satisfied in practice we can strengthen **Fact 2** to $\widehat{\gamma}(\mathbf{f})$ *is strictly concave over* Ω^+ and can strengthen bound (7) of **Fact 3** to the strict inequality

$$\hat{\gamma}(\mathbf{f}) < \log(1 + \hat{\mu}(\mathbf{f})) \text{ when } \mathbf{f} \neq \mathbf{0}.$$
 (10)

Without Risk-Free Assets. Now let us specialize to solvent Markowitz portfolios without risk-free assets. The associated allocations f belong to

$$\Omega = \left\{ \mathbf{f} \in \Omega^{+} : \mathbf{1}^{\mathsf{T}} \mathbf{f} = 1 \right\}. \tag{11}$$

On this set the growth rate mean sample estimator (6) reduces to

$$\widehat{\gamma}(\mathbf{f}) = \sum_{d=1}^{D} w(d) \log(1 + \mathbf{r}(d)^{\mathsf{T}} \mathbf{f}).$$
 (12)

This is an infinitely differentiable function over Ω^+ with

$$\nabla_{\mathbf{f}} \hat{\gamma}(\mathbf{f}) = \sum_{d=1}^{D} w(d) \frac{\mathbf{r}(d)}{1 + \mathbf{r}(d)^{\mathsf{T}} \mathbf{f}},$$

$$\nabla_{\mathbf{f}}^{2} \hat{\gamma}(\mathbf{f}) = -\sum_{d=1}^{D} w(d) \frac{\mathbf{r}(d) \mathbf{r}(d)^{\mathsf{T}}}{(1 + \mathbf{r}(d)^{\mathsf{T}} \mathbf{f})^{2}}.$$
(13)

The Hessian matrix $\nabla_{\mathbf{f}}^2 \, \hat{\gamma}(\mathbf{f})$ has the following properties.

Fact 4. $\nabla_{\mathbf{f}}^2 \, \widehat{\gamma}(\mathbf{f})$ is nonpositive definite for every $\mathbf{f} \in \Omega$.

Fact 5. $\nabla_{\mathbf{f}}^2 \widehat{\gamma}(\mathbf{f})$ is negative definite for every $\mathbf{f} \in \Omega$ if and only if the vectors $\{\mathbf{r}(d)\}_{d=1}^D$ span \mathbb{R}^N .

Remark. Fact 4 implies that $\widehat{\gamma}(\mathbf{f})$ is concave over Ω , which was already proven in Fact 2. Fact 5 implies that $\widehat{\gamma}(\mathbf{f})$ is strictly concave over Ω when the vectors $\{\mathbf{r}(d)\}_{d=1}^D$ span \mathbb{R}^N , which is always the case in practice.

Proof. Let $f \in \Omega$. Then for every $y \in \mathbb{R}^N$ we have

$$\mathbf{y}^{\mathsf{T}} \nabla_{\mathbf{f}}^2 \widehat{\gamma}(\mathbf{f}) \mathbf{y} = -\sum_{d=1}^D w(d) \frac{(\mathbf{r}(d)^{\mathsf{T}} \mathbf{y})^2}{(1 + \mathbf{r}(d)^{\mathsf{T}} \mathbf{f})^2} \le 0.$$

Therefore $\nabla_{\mathbf{f}}^2 \, \widehat{\gamma}(\mathbf{f})$ is nonpositive definite, which proves **Fact 4**.

Proof. Let $f \in \Omega$. Then by the calculation in the previous proof we see that for every $y \in \mathbb{R}^N$

$$\mathbf{y}^{\mathsf{T}} \nabla_{\mathbf{f}}^2 \, \hat{\gamma}(\mathbf{f}) \mathbf{y} = \mathbf{0} \quad \Longleftrightarrow \quad \mathbf{r}(d)^{\mathsf{T}} \mathbf{y} = \mathbf{0} \ \forall d.$$

First, suppose that $\nabla_{\mathbf{f}}^2 \, \widehat{\gamma}(\mathbf{f})$ is not negative definite. Then there exists an $\mathbf{y} \in \mathbb{R}^N$ such that $\mathbf{y}^\mathsf{T} \nabla_{\mathbf{f}}^2 \, \widehat{\gamma}(\mathbf{f}) \mathbf{y} = 0$ and $\mathbf{y} \neq \mathbf{0}$. The vectors $\{\mathbf{r}(d)\}_{d=1}^D$ must then lie in the hyperplane orthogonal (normal) to \mathbf{y} . Therefore the vectors $\{\mathbf{r}(d)\}_{d=1}^D$ do not span \mathbb{R}^N .

Conversely, suppose that the vectors $\{\mathbf{r}(d)\}_{d=1}^D$ do not span \mathbb{R}^N . Then there must be a nonzero vector \mathbf{y} that is orthogonal to their span. This means that \mathbf{y} satisfies $\mathbf{r}(d)^\mathsf{T}\mathbf{y} = 0$ for every d, whereby $\mathbf{y}^\mathsf{T}\nabla_{\mathbf{f}}^2\,\widehat{\gamma}(\mathbf{f})\mathbf{y} = 0$. Therefore $\nabla_{\mathbf{f}}^2\,\widehat{\gamma}(\mathbf{f})$ is not negative definite.

Both directions of the characterization in Fact 5 are now proven.

Henceforth we will assume that the covariance matrix \mathbf{V} is positive definite. Recall that this is equivalent to assuming that the set $\{\mathbf{r}(d) - \mathbf{m}\}_{d=1}^D$ spans \mathbb{R}^N . Because this condition implies that the set $\{\mathbf{r}(d)\}_{d=1}^D$ spans \mathbb{R}^N , by **Fact 5** it implies that $\nabla_{\mathbf{f}}^2 \, \widehat{\gamma}(\mathbf{f})$ is negative definite for every $\mathbf{f} \in \Omega$. Therefore the estimator $\widehat{\gamma}(\mathbf{f})$ is a strictly concave function over Ω .

Remark. Because $\widehat{\gamma}(\mathbf{f})$ is a strictly concave function over Ω , *if it has a maximum then it has a unique maximizer.* Indeed, suppose that $\widehat{\gamma}(\mathbf{f})$ has maximum $\widehat{\gamma}_{\mathsf{mx}}$ over Ω , and that \mathbf{f}_0 and $\mathbf{f}_1 \in \Omega$ are maximizers of $\widehat{\gamma}(\mathbf{f})$ with $\mathbf{f}_0 \neq \mathbf{f}_1$. For every $t \in (0,1)$ define $\mathbf{f}_t = (1-t)\,\mathbf{f}_0 + t\,\mathbf{f}_1$. Then for every $t \in (0,1)$ we have $\mathbf{f}_t \in \Omega$ and, by the strict concavity of $\widehat{\gamma}(\mathbf{f})$ over Ω ,

$$\hat{\gamma}(\mathbf{f}_t) > (1 - t) \, \hat{\gamma}(\mathbf{f}_0) + t \, \hat{\gamma}(\mathbf{f}_1)$$

= $(1 - t) \, \hat{\gamma}_{mx} + t \, \hat{\gamma}_{mx} = \hat{\gamma}_{mx}$.

But this contradicts the fact that $\hat{\gamma}_{mx}$ is the maximum of $\hat{\gamma}(f)$ over Ω . Therefore at most one maximizer can exist.

Recall that Ω^+ is the intersection of the half spaces

$$1 + \mathbf{r}(d)^{\mathsf{T}} \mathbf{f} > 0$$
, for $d = 1, \dots, D$,

and that Ω is the intersection of Ω^+ with the hyperplane $1^T f = 1$.

The set Ω^+ is the intersection of the half-spaces $1+\mathbf{r}(d)^\mathsf{T}\mathbf{f}>0$. The set Ω is the intersection of Ω^+ with the hyperplane $\mathbf{1}^\mathsf{T}\mathbf{f}=1$. For many return histories $\{\mathbf{r}(d)\}_{d=1}^D$ the set Ω is bounded. In such cases we will have $1+\mathbf{r}(d)^\mathsf{T}\mathbf{f} \searrow 0$ for at least one d as \mathbf{f} approaches the boundary of Ω . But then we will have $\log(1+\mathbf{r}(d)^\mathsf{T}\mathbf{f}) \to -\infty$ for at least one d as \mathbf{f} approaches the boundary of Ω . Therefore we will have $\widehat{\gamma}(\mathbf{f}) \to -\infty$ as \mathbf{f} approaches the boundary of Ω . Therefore $\widehat{\gamma}(\mathbf{f})$ has a maximizer in Ω when Ω is bounded.

Other Estimators for the Growth Rate Mean. The maximizer of $\widehat{\gamma}(\mathbf{f})$ over Ω can be found numerically by methods that are typically covered in graduate courses. Rather than seek the maximizer of $\widehat{\gamma}(\mathbf{f})$ over Ω , we will replace the estimator $\widehat{\gamma}(\mathbf{f})$ with a new estimator for which finding the maximizer is easier. The hope is that the maximizer of $\widehat{\gamma}(\mathbf{f})$ and the maximizer of the new estimator will be close.

This strategy rests upon the fact that $\hat{\gamma}(\mathbf{f})$ is itself an approximation. The uncertainties associated with it will translate into uncertainties about its maximizer. The hope is that the difference between the maximizer of $\hat{\gamma}(\mathbf{f})$ and that of the new estimator will be within these uncertainties.

For simplicity we remain within the setting of solvent Markowitz portfolios without risk-free assets. We will present some new growth rate estimators. These will be expressed in terms of the return mean vector \mathbf{m} and return covariance matrix \mathbf{V} . This will allow their maximizers to be found easily in a later lecture by using the efficient frontiers developed earlier.

A stratagy introduced by Markowitz in his 1959 book is to estimate $\hat{\gamma}(\mathbf{f})$ by using the *second-order Taylor approximation* of $\log(1+r)$ for small r. This approximation is

$$\log(1+r) \approx r - \frac{1}{2}r^2. \tag{14}$$

When this approximation is used in (12) we obtain the *quadratic estimator* of the growth rate mean

$$\widehat{\gamma}_{\mathsf{q}}(\mathbf{f}) = \sum_{d=1}^{D} w(d) \left(\mathbf{r}(d)^{\mathsf{T}} \mathbf{f} - \frac{1}{2} (\mathbf{r}(d)^{\mathsf{T}} \mathbf{f})^{2} \right)$$

$$= \left(\sum_{d=1}^{D} w(d) \mathbf{r}(d) \right)^{\mathsf{T}} \mathbf{f} - \frac{1}{2} \mathbf{f}^{\mathsf{T}} \left(\sum_{d=1}^{D} w(d) \mathbf{r}(d) \mathbf{r}(d)^{\mathsf{T}} \right) \mathbf{f}$$

$$= \mathbf{m}^{\mathsf{T}} \mathbf{f} - \frac{1}{2} \mathbf{f}^{\mathsf{T}} \left(\mathbf{m} \mathbf{m}^{\mathsf{T}} + \mathbf{V} \right) \mathbf{f} .$$
(15)

The *quadratic estimator* (15) can be expressed as

$$\hat{\gamma}_{\mathsf{q}}(\mathbf{f}) = \mathbf{m}^{\mathsf{T}} \mathbf{f} - \frac{1}{2} (\mathbf{m}^{\mathsf{T}} \mathbf{f})^{2} - \frac{1}{2} \mathbf{f}^{\mathsf{T}} \mathbf{V} \mathbf{f}.$$
 (16)

We obtained this estimator twice earlier using the moment and cumulant generating functions.

Because it is often the case that

$$(\mathbf{m}^\mathsf{T}\mathbf{f})^2$$
 is much smaller than $\mathbf{f}^\mathsf{T}\mathbf{V}\mathbf{f}$,

it is tempting to drop the $(\mathbf{m}^T\mathbf{f})^2$ term in (16). This leads to the *parabolic estimator* of the growth rate mean

$$\widehat{\gamma}_{p}(\mathbf{f}) = \mathbf{m}^{\mathsf{T}} \mathbf{f} - \frac{1}{2} \mathbf{f}^{\mathsf{T}} \mathbf{V} \mathbf{f}. \tag{17}$$

Remark. This estimator is commonly used. However, there are many times when this is not a good estimator. It is particularly bad in a bubble. We will see that using it will lead to overbetting at times when overbetting can be very risky.

The following table shows that the second-order Taylor approximation (14) to $\log(1+r)$ is pretty good when |r|<.25 and that it is not too bad when .25<|r|<.5. It is bad when $|r|\geq 1$.

$oxed{ r }$	$\log(1+r)$	$r - \frac{1}{2}r^2$	$r - \frac{1}{2}r^2 + \frac{1}{3}r^3$
5	69315	62500	66667
4	51083	48000	50133
3	35667	34500	35400
$\parallel2 \mid$	22314	22000	22267
$\parallel1 \mid$	10536	10500	10533
0.	.00000	.00000	.00000
.1	.09531	.09500	.09533
.2	.18232	.18000	.18267
.3	.26236	.25500	.26400
.4	.33647	.32000	.34133
.5	.40547	.37500	.41667

We can also estimate $\hat{\gamma}(\mathbf{f})$ by the second-order Taylor approximation of $\log(1+r)$ for $r = \mathbf{r}(d)^T \mathbf{f}$ near $\hat{\mu}(\mathbf{f}) = \mathbf{m}^T \mathbf{f}$. That approximation is

$$\log(1+r) \approx \log\left(1+\mathbf{m}^{\mathsf{T}}\mathbf{f}\right) + \frac{(\mathbf{r}(d)-\mathbf{m})^{\mathsf{T}}\mathbf{f}}{1+\mathbf{m}^{\mathsf{T}}\mathbf{f}} - \frac{1}{2}\frac{\left((\mathbf{r}(d)-\mathbf{m})^{\mathsf{T}}\mathbf{f}\right)^{2}}{(1+\mathbf{m}^{\mathsf{T}}\mathbf{f})^{2}}.$$

When this approximation is used in (12) we obtain the estimator

$$\widehat{\gamma}_{S}(f) = \log(1 + \mathbf{m}^{\mathsf{T}} \mathbf{f}) - \frac{1}{2} \frac{\mathbf{f}^{\mathsf{T}} \mathbf{V} \mathbf{f}}{(1 + \mathbf{m}^{\mathsf{T}} \mathbf{f})^{2}}.$$
 (18)

We obtained this estimator earlier using the cumulant generating function.

Remark. The estimator (18) satisfies the upper bound (7) from **Fact 3**. However, it is not concave and does not generally have a maximum. This makes it a poor candidate for a new growth rate mean estimator.

We now introduce an estimator with better properties that uses the first term from the second-order estimator (18) and the volatility term from the quadratic estimator (16). This leads to the *reasonable estimator* of the growth rate mean

$$\hat{\gamma}_{\mathsf{f}}(\mathbf{f}) = \log(1 + \mathbf{m}^{\mathsf{T}}\mathbf{f}) - \frac{1}{2}\mathbf{f}^{\mathsf{T}}\mathbf{V}\mathbf{f}$$
 (19)

This estimator is defined over the half-space where

$$1 + \mathbf{m}^{\mathsf{T}} \mathbf{f} > 0.$$

This contains the half-space H over which the mean-centered estimator (19) was defined. It also contains Ω , the set of allocations for solvent Markowitz portfolios. Moreover, it is strictly concave and satisfies the upper bound (7) from **Fact 3** over this half-space.

Next, a different modification of (18) yields another growth rate mean estimator with good properties — namely, the mean-centered estimator

$$\widehat{\gamma}_{\mathsf{m}}(\mathbf{f}) = \log(1 + \mathbf{m}^{\mathsf{T}}\mathbf{f}) - \frac{1}{2} \frac{\mathbf{f}^{\mathsf{T}}\mathbf{V}\mathbf{f}}{1 + 2\mathbf{m}^{\mathsf{T}}\mathbf{f}}, \tag{20}$$

which is defined on the half-space $H = \{f \in \mathbb{R}^N : 0 < 1 + 2m^T f\}$.

The estimator $\widehat{\gamma}_m(\mathbf{f})$ clearly satisfies the upper bound (7) from **Fact 3** for every $\mathbf{f} \in H$. Moreover, we have the following.

Fact 6. $\hat{\gamma}_{m}(f)$ is strictly concave over the half-space H.

Proof. This will follow upon showing that $\hat{\gamma}_{m}(f)$ is the sum of two functions, the first of which is concave over H and the second of which is strictly concave over H.

The function $log(1 + m^T f)$ is infinitely differentiable over H with

$$\begin{split} \nabla_{\!f} \log \! \left(1 + \mathbf{m}^{\!\mathsf{T}} \mathbf{f} \right) &= \frac{\mathbf{m}}{1 + \mathbf{m}^{\!\mathsf{T}} \mathbf{f}}, \\ \nabla_{\!f}^2 \log \! \left(1 + \mathbf{m}^{\!\mathsf{T}} \mathbf{f} \right) &= -\frac{\mathbf{m} \, \mathbf{m}^{\!\mathsf{T}}}{(1 + \mathbf{m}^{\!\mathsf{T}} \mathbf{f})^2}. \end{split}$$

Because its Hessian is nonpositive definite, the function $log(1 + m^T f)$ is concave over H.

The harder part of the proof is to show that

$$-\frac{1}{2} \frac{\mathbf{f}^{\mathsf{T}} \mathbf{V} \mathbf{f}}{1 + 2\mathbf{m}^{\mathsf{T}} \mathbf{f}} \quad \text{is strictly concave over } H. \tag{21}$$

This follows from the next two facts. Our proof of **Fact 6** will be completed after those facts are established.

Fact 7. Let $\mathbf{b}, \mathbf{x} \in \mathbb{R}^N$ such that $1 + \mathbf{b}^\mathsf{T} \mathbf{x} > 0$. Then $\mathbf{I} + \mathbf{x} \, \mathbf{b}^\mathsf{T}$ is invertible with

$$\left(\mathbf{I} + \mathbf{x} \, \mathbf{b}^{\mathsf{T}}\right)^{-1} = \mathbf{I} - \frac{\mathbf{x} \, \mathbf{b}^{\mathsf{T}}}{1 + \mathbf{b}^{\mathsf{T}} \mathbf{x}}.\tag{22}$$

Proof. Just check that

$$\begin{split} \left(\mathbf{I} + \mathbf{x} \, \mathbf{b}^\mathsf{T}\right) \left(\mathbf{I} - \frac{\mathbf{x} \, \mathbf{b}^\mathsf{T}}{1 + \mathbf{b}^\mathsf{T} \mathbf{x}}\right) &= \left(\mathbf{I} + \mathbf{x} \, \mathbf{b}^\mathsf{T}\right) - \frac{\left(\mathbf{I} + \mathbf{x} \, \mathbf{b}^\mathsf{T}\right) \mathbf{x} \, \mathbf{b}^\mathsf{T}}{1 + \mathbf{b}^\mathsf{T} \mathbf{x}} \\ &= \mathbf{I} + \mathbf{x} \, \mathbf{b}^\mathsf{T} - \frac{\mathbf{x} \, \mathbf{b}^\mathsf{T} + \mathbf{x} \, \mathbf{b}^\mathsf{T} \mathbf{x} \, \mathbf{b}^\mathsf{T}}{1 + \mathbf{b}^\mathsf{T} \mathbf{x}} \\ &= \mathbf{I} + \mathbf{x} \, \mathbf{b}^\mathsf{T} - \frac{1 + \mathbf{b}^\mathsf{T} \mathbf{x}}{1 + \mathbf{b}^\mathsf{T} \mathbf{x}} \mathbf{x} \, \mathbf{b}^\mathsf{T} = \mathbf{I} \,. \end{split}$$

The assertions of **Fact 7** then follow.

Fact 8. Let $A \in \mathbb{R}^{N \times N}$ be symmetric and positive definite. Let $b \in \mathbb{R}^N$. Let X be the half-space given by

$$X = \left\{ \mathbf{x} \in \mathbb{R}^N : 1 + \mathbf{b}^\mathsf{T} \mathbf{x} > 0 \right\}.$$

Then

$$\phi(\mathbf{x}) = \frac{1}{2} \frac{\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}}{1 + \mathbf{b}^{\mathsf{T}} \mathbf{x}}$$
 is strictly convex over X .

Proof. The function $\phi(\mathbf{x})$ is infinitely differentiable over X with

$$\nabla_{\mathbf{x}} \phi(\mathbf{x}) = \frac{\mathbf{A}\mathbf{x}}{1 + \mathbf{b}^{\mathsf{T}}\mathbf{x}} - \frac{1}{2} \frac{\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} \, \mathbf{b}}{(1 + \mathbf{b}^{\mathsf{T}} \mathbf{x})^{2}},$$

$$\nabla_{\mathbf{x}}^{2} \phi(\mathbf{x}) = \frac{\mathbf{A}}{1 + \mathbf{b}^{\mathsf{T}}\mathbf{x}} - \frac{\mathbf{A}\mathbf{x} \, \mathbf{b}^{\mathsf{T}} + \mathbf{b} \, \mathbf{x}^{\mathsf{T}} \mathbf{A}}{(1 + \mathbf{b}^{\mathsf{T}} \mathbf{x})^{2}} + \frac{\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} \, \mathbf{b} \, \mathbf{b}^{\mathsf{T}}}{(1 + \mathbf{b}^{\mathsf{T}} \mathbf{x})^{3}}.$$

Then using (22) of **Fact 7** the Hessian can be expressed as

$$\begin{split} \nabla_{\mathbf{x}}^{2} \phi(\mathbf{x}) &= \left(\mathbf{I} - \frac{\mathbf{b} \, \mathbf{x}^{\mathsf{T}}}{1 + \mathbf{b}^{\mathsf{T}} \mathbf{x}}\right) \frac{\mathbf{A}}{1 + \mathbf{b}^{\mathsf{T}} \mathbf{x}} \left(\mathbf{I} - \frac{\mathbf{x} \, \mathbf{b}^{\mathsf{T}}}{1 + \mathbf{b}^{\mathsf{T}} \mathbf{x}}\right) \\ &= \left(\mathbf{I} + \mathbf{x} \, \mathbf{b}^{\mathsf{T}}\right)^{-\mathsf{T}} \frac{\mathbf{A}}{1 + \mathbf{b}^{\mathsf{T}} \mathbf{x}} \left(\mathbf{I} + \mathbf{x} \, \mathbf{b}^{\mathsf{T}}\right)^{-1}. \end{split}$$

Because A is positive definite and $1 + \mathbf{b}^T \mathbf{x} > 0$ for every $\mathbf{x} \in X$, this shows that $\nabla_{\mathbf{x}}^2 \phi(\mathbf{x})$ is positive definite for every $\mathbf{x} \in X$. Therefore $\phi(\mathbf{x})$ is strictly convex over X, thereby proving **Fact 8**.

By setting A = V and b = 2m in **Fact 8** and using the fact that the negative of a strictly convex function is strictly concave, we establish (21), thereby completing the proof of **Fact 6**.

Finally, we identify a class of solvent Markowitz portfolios whose allocations lie within H.

Fact 9.
$$\Omega_{\frac{1}{2}} = \left\{ \mathbf{f} \in \Omega : \frac{1}{2} \le 1 + \mathbf{r}(d)^{\mathsf{T}} \mathbf{f} \ \forall d \right\} \subset H.$$

Proof. Because $\Omega_{\frac{1}{2}} = \left\{ \mathbf{f} \in \Omega : 0 \leq 1 + 2\mathbf{r}(d)^\mathsf{T} \mathbf{f} \ \forall d \right\}$, it is clear that $0 \leq 1 + 2\mathbf{m}^\mathsf{T} \mathbf{f}$ for every $\mathbf{f} \in \Omega_{\frac{1}{2}}$ with equality if only if $0 = 1 + 2\mathbf{r}(d)^\mathsf{T} \mathbf{f}$ for every d. But this implies that $(\mathbf{r}(d) - \mathbf{m})^\mathsf{T} \mathbf{f} = 0$ for every d, which implies that $\{\mathbf{r}(d) - \mathbf{m}\}_{d=1}^D$ does not span \mathbb{R}^N , which contradicts the assumption that \mathbf{V} is positive definite. Therefore $0 < 1 + 2\mathbf{m}^\mathsf{T} \mathbf{f}$ for every $\mathbf{f} \in \Omega_{\frac{1}{2}}$. \square

Remark. This class excludes portfolios that would have dropped 50% in value during a single trading day over the history considered. This seems like a reasonable constraint for any long-term investor.

With Risk-Free Assets. We now extend the estimators derived in the last section to solvent Markowitz portfolios with risk-free assets. Specifically, we will use the sample estimator $\hat{\gamma}(\mathbf{f})$ to derive new estimators of $\gamma(\mathbf{f})$ in terms of sample estimators of the return mean and variance given by

$$\widehat{\mu}(\mathbf{f}) = \mu_{\mathsf{rf}}(\mathbf{f}) \left(\mathbf{1} - \mathbf{1}^{\mathsf{T}} \mathbf{f} \right) + \mathbf{m}^{\mathsf{T}} \mathbf{f}, \qquad \mathbf{f}^{\mathsf{T}} \mathbf{V} \mathbf{f},$$
 (23)

where m and V are given by

$$\mathbf{m} = \sum_{d=1}^{D} w(d)\mathbf{r}(d),$$

$$\mathbf{V} = \sum_{d=1}^{D} w(d) (\mathbf{r}(d) - \mathbf{m}) (\mathbf{r}(d) - \mathbf{m})^{\mathsf{T}}.$$
(24)

These new return mean-variance estimators of $\gamma(\mathbf{f})$ will allow us to work within the framework of Markowitz portfolio theory.

We observe that $\hat{\mu}(\mathbf{f})$ is the sample mean of of the history $\{r(d, \mathbf{f})\}_{d=1}^D$ and that

$$r(d, \mathbf{f}) - \widehat{\mu}(\mathbf{f}) = \widetilde{\mathbf{r}}(d)^{\mathsf{T}} \mathbf{f},$$

where $\tilde{\mathbf{r}}(d) = \mathbf{r}(d) - \mathbf{m}$. In words, $\tilde{\mathbf{r}}(d)$ is the deviation of $\mathbf{r}(d)$ from its sample mean \mathbf{m} . Then we can write

$$\log(1 + r(d, \mathbf{f})) = \log(1 + \widehat{\mu}(\mathbf{f})) + \frac{\tilde{\mathbf{r}}(d)^{\mathsf{T}}\mathbf{f}}{1 + \widehat{\mu}(\mathbf{f})} - \left(\frac{\tilde{\mathbf{r}}(d)^{\mathsf{T}}\mathbf{f}}{1 + \widehat{\mu}(\mathbf{f})} - \log\left(1 + \frac{\tilde{\mathbf{r}}(d)^{\mathsf{T}}\mathbf{f}}{1 + \widehat{\mu}(\mathbf{f})}\right)\right). \tag{25}$$

Notice that the last term on the first line has sample mean zero while the concavity of the function $r \mapsto \log(1+r)$ implies that $r - \log(1+r) \ge 0$, which implies that the term on the second line is nonpositive.

Therefore by taking the sample mean of (25) we obtain

$$\widehat{\gamma}(\mathbf{f}) = \sum_{d=1}^{D} w(d) \log(1 + r(d, \mathbf{f}))$$

$$= \log(1 + \widehat{\mu}(\mathbf{f}))$$

$$- \sum_{d=1}^{D} w(d) \left(\frac{\widetilde{\mathbf{r}}(d)^{\mathsf{T}} \mathbf{f}}{1 + \widehat{\mu}(\mathbf{f})} - \log\left(1 + \frac{\widetilde{\mathbf{r}}(d)^{\mathsf{T}} \mathbf{f}}{1 + \widehat{\mu}(\mathbf{f})}\right)\right).$$
(26)

The last sum will be positive whenever $f \neq 0$ and V is positive definite.

Remark. By dropping the last term in the foregoing calculation we get an alternative proof of **Fact 3**, which was proved earlier using the Jensen inequality. Indeed, (26) can be viewed as an improvement upon **Fact 3**.

We can estimate $\hat{\gamma}(\mathbf{f})$ useing the *second-order Taylor approximation* of $\log(1+r)$ for small r. This approximation is

$$\log(1+r) \approx r - \frac{1}{2}r^2. \tag{27}$$

When this approximation is used inside the sum of (26) we obtain

$$\widehat{\gamma}(\mathbf{f}) \approx \log(1 + \widehat{\mu}(\mathbf{f})) - \frac{1}{2} \sum_{d=1}^{D} w(d) \left(\frac{\widetilde{\mathbf{r}}(d)^{\mathsf{T}} \mathbf{f}}{1 + \widehat{\mu}(\mathbf{f})} \right)^{2}.$$

This leads to the second-order estimator

$$\widehat{\gamma}_{S}(\mathbf{f}) = \log(1 + \widehat{\mu}(\mathbf{f})) - \frac{1}{2} \frac{\mathbf{f}^{\mathsf{T}} \mathbf{V} \mathbf{f}}{(1 + \widehat{\mu}(\mathbf{f}))^{2}}.$$
 (28)

This estimator satisfies **Fact 1** and the bound (7) from **Fact 3**. However, it is not concave and does not generally have a maximum. This makes it a poor candidate for a new growth rate mean estimator. However, the following better ones can be derived from it.

The analog of the mean-centered estimator (20) is

$$\widehat{\gamma}_{\mathsf{m}}(\mathbf{f}) = \log(1 + \widehat{\mu}(\mathbf{f})) - \frac{1}{2} \frac{\mathbf{f}^{\mathsf{T}} \mathbf{V} \mathbf{f}}{1 + 2\widehat{\mu}(\mathbf{f})} \quad \text{over} \quad 1 + 2\widehat{\mu}(\mathbf{f}) > 0. \quad (29)$$

The analog of the reasonable estimator (19) is

$$\hat{\gamma}_{\mathsf{r}}(\mathbf{f}) = \log(1 + \hat{\mu}(\mathbf{f})) - \frac{1}{2}\mathbf{f}^{\mathsf{T}}\mathbf{V}\mathbf{f}$$
 over $1 + \hat{\mu}(\mathbf{f}) > 0$. (30)

The analog of the quadratic estimator (16) is

$$\hat{\gamma}_{\mathsf{q}}(\mathbf{f}) = \hat{\mu}(\mathbf{f}) - \frac{1}{2}\hat{\mu}(\mathbf{f})^2 - \frac{1}{2}\mathbf{f}^{\mathsf{T}}\mathbf{V}\mathbf{f}$$
 over $\hat{\mu}(\mathbf{f}) < 1$. (31)

The analog of the parabolic estimator (17) is

$$\widehat{\gamma}_{p}(\mathbf{f}) = \widehat{\mu}(\mathbf{f}) - \frac{1}{2}\mathbf{f}^{\mathsf{T}}\mathbf{V}\mathbf{f}.$$
 (32)

It can be shown that each of these estimators is strictly concave and has a global maximum over its domain. The mean-centered estimator (29) and the reasonable estimator (30) satisfy **Fact 1** and bound (7) from **Fact 3**.

The derivations of these estimators each assume that $|\hat{\mu}(\mathbf{f})| \ll 1$.

The mean-centered estimator (29) derives from the second-order estimator (28) by dropping the $\hat{\mu}(\mathbf{f})^2$ term from the denominator under $\mathbf{f}^{\mathsf{T}}\mathbf{V}\mathbf{f}$.

The reasonable estimator (30) derives from the mean-centered estimator (29) by dropping the $2\hat{\mu}(\mathbf{f})$ term from the denominator under $\mathbf{f}^{\mathsf{T}}\mathbf{V}\mathbf{f}$.

The quadratic estimator (31) derives from the reasonable estimator (30) by replacing $\log(1+\widehat{\mu}(\mathbf{f}))$ with the second-order Taylor approximation $\widehat{\mu}(\mathbf{f})-\frac{1}{2}\widehat{\mu}(\mathbf{f})^2$. The result is an increasing function of $\widehat{\mu}(\mathbf{f})$ when $\widehat{\mu}(\mathbf{f})<1$.

The parabolic estimator (32) derives from the quadratic estimator (30) by also assuming that $\hat{\mu}(\mathbf{f})^2 \ll \mathbf{f}^T \mathbf{V} \mathbf{f}$ and dropping the $\hat{\mu}(\mathbf{f})^2$ term.