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Portfolios 13. Law of Large Numbers (Kelly) Objectives

An IID model for the Markowitz portfolio with allocation f satisfies

Ex

(
log

(
π(d)

π(0)

))
= d γ , Var

(
log

(
π(d)

π(0)

))
= d θ ,

where γ and θ are estimated from a share price history by

µ̂ = µrf

(
1− 1Tf

)
+ mTf , γ̂ = µ̂− 1

2

(
µ̂2 + fTVf

)
, θ̂ =

fTVf

1− w̄
.

We see that γ̂ d is then the estimated expected growth of the IID model
while θ̂ d is its estimated variance after d trading days.

Our approach to portfolio management will be to select a distribution f
that maximizes some objective function. Here we develop a family of such
objective functions built from γ̂ and θ̂ with the aid of an important tool from
probability, the Law of Large Numbers.



Law of Large Numbers. Let {X(d)}∞d=1 be any sequence of IID random
variables drawn from a probability density p(X) with mean γ and variance
θ > 0. Let {Y (d)}∞d=1 be the sequence of random variables defined by

Y (d) =
1

d

d∑
d′=1

X(d′) for every d = 1, · · · ,∞ .

It is easy to check that

Ex(Y (d)) = γ , Var(Y (d)) =
θ

d
.

Given any δ > 0 the Law of Large Numbers states that

lim
d→∞

Pr
{
|Y (d)− γ| ≥ δ

}
= 0 . (1)

This limit is not uniform in δ. Its convergence rate can be estimated by the
Chebyshev inequality, which yields the (not uniform in δ) upper bound

Pr
{
|Y (d)− γ| ≥ δ

}
≤

Var(Y (d))

δ2
=

1

δ2

θ

d
. (2)



Remark. The Chebyshev inequality is easy to derive. Suppose that pd(Y )

is the (unknown) probability density for Y (d). Then

Pr
{
|Y (d)− γ| ≥ δ

}
=
∫
{Y : |Y−γ|≥δ}

pd(Y ) dY

≤
∫
{Y : |Y−γ|≥δ}

|Y − γ|2

δ2
pd(Y ) dY

≤
1

δ2

∫
|Y − γ|2 pd(Y ) dY =

Var(Y (d))

δ2
=

1

δ2

θ

d
.

Remark. The unknown probability density pd(Y ) can be expressed in
terms of the unknown probability density p(X) as

pd(Y ) =
∫
· · ·

∫
δ

Y − 1

d

d∑
d′=1

Xd′

 p(X1) · · · p(Xd) dX1 · · ·dXd ,

where δ( · ) is the Dirac delta distribution introduced earlier.



If {X(d)}Dd=1 is any sequence of IID random variables drawn from an
unknown probability density p(X) with unknown mean γ and variance θ
then γ and θ have the unbiased estimators γ̂ and θ̂ given by

γ̂ =
1

D

D∑
d=1

X(d) , θ̂ =
1

D − 1

D∑
d=1

(
X(d)− γ̂

)2
.

The law of large numbers (1) states that the estimator γ̂ will converge to γ
as D → ∞. However, in practice D will be finite. The Chebyshev bound
(2) can be used to assess the quality of the estimator γ̂ for finite D.

When γ > 0 the relative error of the estimate γ̂ is

|γ̂ − γ|
γ

.

We would like to know how big D should be to insure that this relative error
is less than some η ∈ (0,1) with a certain confidence.



By setting δ = ηγ in the Chebyshev bound (2) we obtain

Pr

{
|γ̂ − γ|
γ

≥ η
}
≤

1

η2

θ

γ2

1

D
.

We then replace θ and γ on the right-hand side by θ̂ and γ̂ and pick D
large enough to achieve the desired confidence.

For example, if we want to know γ to within 20% with a confidence of 90%

then we set η = 1
5 and pick D so large that

25
θ̂

γ̂2

1

D
≤

1

10
.

Because there are about 250 trading days in a year, this shows that we
must average X(d) over a period of θ̂/γ̂2 years before we can know γ that
well with this much confidence. In practice θ̂/γ̂2 is not small.



Kelly Criterion for a Simple Game. In 1956 John Kelly used the Law of
Large Numbers to analyze optimal betting strategies for a class of games
of chance. The result became know as the Kelly criterion, Kelly strategy, or
Kelly bet. It was subsequently adopted by Claude Shannon, Ed Thorp, and
others to develop the first successful card counting strategies for winning at
blackjack and other casino games. These exploits are documented in the
Ed Thorpe’s 1962 book Beat the Dealer. At the time many casinos were
controlled by organized crime, so using these techniques could adversely
affect the user’s health.

Claude Shannon, Ed Thorp, and others soon realized that it was much
better for both their health and their wealth to apply the Kelly criterion to
winning on Wall Street. Ed Thorpe laid out a strategy to do this in his
1967 book Beat the Market. He went on to run the first quantiative hedge
fund, Princeton Newport Partners, which introduced statistical arbitrage
strategies to Wall Street. This history is embellished in Scott Peterson’s
2010 book The Quants.



The Kelly criterion can be applied to balancing portfolios with risky assets.
Before showing how to do this we will show how it is applied to a simple
betting game.

First consider a game in which each time that we place a bet:

(i) the probability of winning is p ∈ (0,1),

(ii) the probability of losing is q = 1− p,
(iii) when we win there is a positive return r on our bet.

We start with a bankroll of cash and the game ends when the bankroll
is gone. Suppose that you know p and r. We would like answers to the
following questions.

1. When should we play?,

2. When we do play, what fraction of our bankroll should we bet?,



The game is clearly an IID process. Because each time we play we are
faced with the same questions and will have no addtional helpful informa-
tion, the answers will be the same each time. Therefore we only consider
strategies in which we bet a fixed fraction f of our bankroll. If f = 0 then
we are not betting. If f = 1 then we are betting out entire bankroll. (This is
clearly a foolish strategy in the long run because we will go broke the first
time we lose.) Then

when we win our bankroll increases by a factor of 1 + fr,

when we lose our bankroll decreases by a factor of 1− f.
Therefore if we bet n times and win m times (hence, lose n − m times)
then our bankroll changes by a factor of

(1 + fr)m(1− f)n−m .

The Kelly criterion is to pick f ∈ [0,1) to maximize this factor for large n.



This is equivalent to maximizing the log of this factor, which is

m log(1 + fr) + (n−m) log(1− f) .

The law of large numbers implies that

lim
n→∞

m

n
= p .

Therefore for large n we see that

m log(1 + fr) + (n−m) log(1− f)

∼
(
p log(1 + fr) + (1− p) log(1− f)

)
n .

Hence, the Kelly criterion says that we want to pick f ∈ [0,1) to maximize
the growth rate

γ(f) = p log(1 + fr) + (1− p) log(1− f) . (3)

This is now an exercise from first semester calculus.



Notice that γ(0) = 0 and that

lim
f↗1

γ(f) = −∞ .

Also notice that for every f ∈ [0,1) we have

γ′(f) =
pr

1 + fr
−

1− p
1− f

,

γ′′(f) = −
pr2

(1 + fr)2
−

1− p
(1− f)2

.

Because γ′′(f) < 0 over [0,1), we see that γ(f) is strictly concave over
[0,1) and that γ′(f) is strictly decreasing over [0,1).

If γ′(0) = pr−(1−p) = p(1+r)−1 ≤ 0 then γ(f) is strictly deceasing
over [0,1) because γ′(f) is strictly decreasing over [0,1). In that case
the maximizer for γ(f) over [0,1) is f = 0 and the maximun is γ(0) = 0.



If γ′(0) = pr − (1 − p) = p(1 + r) − 1 > 0 then γ(f) has a unique
maximizer at f = f∗ ∈ (0,1) that satifies

0 = γ′(f∗) =
pr

1 + f∗r
−

1− p
1− f∗

=
pr(1− f∗)− (1− p)(1 + f∗r)

(1 + f∗r)(1− f∗)

=
p(1 + r)− f∗r

(1 + f∗r)(1− f∗)
.

Upon solving this equation for f∗ we find that

f∗ =
p(1 + r)− 1

r
. (4)

Remark. We see from (4) that if p(1 + r)− 1 > 0 then

0 < f∗ =
p(1 + r)− 1

r
= p−

1− p
r

< p < 1 .



Therefore the Kelly crtierion yields the optimal betting strategy

f∗ =


0 if p(1 + r)− 1 ≤ 0 ,
p(1 + r)− 1

r
if p(1 + r)− 1 > 0 .

(5)

The maximum growth rate (details not shown) when p(1 + r)− 1 > 0 is

γ(f∗) = p log
(
p(1 + r)

)
+ (1− p) log

(
(1− p)

1 + r

r

)
. (6)

Remark. In practice this strategy is is far from ideal for reasons that we will
discuss in the next section.



Remark. Some bettors call r the odds because the return r on a winning
wager is usually chosen so that the ratio r : 1 reflects a probability of
winning. The expected return on each amount wagered is pr − (1 − p).
This is the probability of winning, p, times the return of a win, r, plus the
probability of losing, 1 − p, times the return of a loss, −1. Some bettors
call this quantity the edge when it is postive. Notice that pr − (1 − p) =

p(1+r)−1 is the numerator of f∗ given by (4), while r is the denominator
of f∗ given by (4). Then strategy (5) can be expressed in this language as
follows.

1. Do not bet unless we have an edge.

2. If we have an edge then bet f∗ of our bankroll where

f∗ =
edge

odds
.

This view of the Kelly criterion is popular, but is not very helpful when trying
to apply it to more complicated games.



Kelly Criterion in Practice. In most betting games played at casinos the
players do not have an edge unless they can use information that is not
used by the house when computing the odds. For example, card count-
ing strategies can allow a blackjack player to compute a more accurate
probability of winning than the one used by the house when it computed
the odds. Kelly bettors will not make a serious wager until they are sure
they have an edge, and then they will use the Kelly criterion to size their
bet. Typically their bet will be a fraction of the Kelly optimal bet. This be-
cause their algorithm usually yields an approximation of their edge, so they
are not sure of their true Kelly optimal bet, and there is a big downside to
betting more that the true Kelly optimal bet.

We will illustrate these ideas with a modification of the simple game from
the last section. Specifically, suppose that the game is the same except for
the fact that we are not told p. Rather, we are told that r = .125 and that
the player won 225 times the last 250 times the game was played.



Based on the information that the player won 225 times the last 250 times
the game was played, we guess that p = .9. If we use this value of p then
we see that

p(1 + r)− 1 = .9(1 + .125)− 1 = 9
10 ·

9
8 − 1 = 1

80 .

Based on this calculation, we have an edge, so we will play and the optimal
bet is

f∗ =
p(1 + r)− 1

r
=

1
80
1
8

= 1
10 .

Therefore the Kelly strategy is to bet 1
10 of our bankroll each time.

However, suppose that the previous players had just gotten lucky and that
in fact p = .875. If we use this value of p then we see that

p(1 + r)− 1 = .875(1 + .125)− 1 = 7
8 ·

9
8 − 1 = − 1

64 .

Therefore we do not have an edge and we should not play!



The difference between .9 and .875 is not large in the sense that it is not
an unreasonable error based on only 250 observations. If we bet 1

10 of our
bankroll each time then our bankroll will be significantly diminished before
we have played the game enough to realize that there is no edge!

Now suppose that in fact p = .895. If we use this value of p then we see
that

p(1 + r)− 1 = .895(1 + .125)− 1 = .006875 .

So in fact, we have an edge. However, the optimal bet is

f∗ =
p(1 + r)− 1

r
=
.006875

.125
= .055 .

If we bet 1
10 of our bankroll each time then our bankroll will be significantly

diminished before we have played the game enough to realize that p is
lower than .9.



In this game both the edge and the odds are small. Small uncertainties in
our estimation of p can lead to large uncertainties in our estimation of f∗.
If we overestimate f∗ enough then we are almost certain to lose. Betting
more than the true f∗ is called overbetting. If we underestimate f∗ then we
will certainly win, just a less than the optimal amount.

Because of this asymmetry, it is wise to bet a fraction of the optimal Kelly
bet when we are uncertain of our edge. The greater the uncertainty, the
smaller the fraction that should be used. Fractions ranging from 1

3 to 1
10 are

common, depending on the uncertainty. These are called fractional Kelly
strategies.


