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Portfolios 12. Growth Rate Estimators

The idea now is to treat the Markowitz portfolio associated with f as a
single risky asset that can be modeled by the IID process associated with
the growth rate probability density pf(X) given by

pf(X) = qf

(
eX − 1

)
eX .

The mean γ and variance θ of X are given by

γ =
∫
X pf(X) dX , θ =

∫
(X − γ)2pf(X) dX .

We know from our study of one risky asset that γ is a good proxy for reward,
while

√
θ is a good proxy for risk. Therefore we would like to estimate γ

and θ in terms of the estimators µ̂ and ξ̂ that we studied last time.



Moment and Cumulant Generating Functions. Estimators for γ and θ
will be constructed from the positive function

M(τ) = Ex
(
eτX

)
=
∫
eτX pf(X) dX .

We will assumeM(τ) is defined for every τ in an open interval (τmn, τmx)

that contains the interval [0,2]. It can then be shown thatM(τ) is infinitely
differentiable over (τmn, τmx) with

M(m)(τ) = Ex
(
Xm eτX

)
=
∫
Xm eτX pf(X) dX .

We call M(τ) the moment generating function for X because, by setting
τ = 0 in the above expression, we see that the moments {Ex(Xm)}∞m=1
are generated from M(τ) by the formula

Ex
(
Xm

)
=
∫
Xmpf(X) dX = M(m)(0) .



A related inifinitely differentiable function over (τmn, τmx) is

K(τ) = log(M(τ)) = log
(
Ex
(
eτX

))
.

We call K(τ) the cumulant generating function because the cumulants
{κm}∞m=1 of X are generated by the formula κm = K(m)(0). Because

K′(τ) =
Ex
(
X eτX

)
Ex
(
eτX

) ,

K′′(τ) =
Ex
(
(X −K′(τ))2eτX

)
Ex
(
eτX

) ,

K′′′(τ) =
Ex
(
(X −K′(τ))3eτX

)
Ex
(
eτX

) ,

K′′′′(τ) =
Ex
(
(X −K′(τ))4eτX

)
Ex
(
eτX

) − 3K′′(τ)2 ,



we see that the first four cumulants of X are

κ1 = K′(0) = Ex(X) = γ ,

κ2 = K′′(0) = Ex
(
(X − γ)2

)
= θ ,

κ3 = K′′′(0) = Ex
(
(X − γ)3

)
,

κ4 = K′′′′(0) = Ex
(
(X − γ)4

)
− 3θ2 .

We call these respectively the mean, variance, skewness, and kurtosis.
The skewness measures asymmetry in the tails of the distribution. It is
positive or negative depending on whether the fatter tail is to the right or
left respectively. The kurtosis measures a relationship between the tails
and the center of the distribution. It is greater for distributions with greater
weight in the tails than in the center.

Remark. It should be evident from the formulas on the previous slide that
K′(τ), K′′(τ), K′′′(τ), and K′′′′(τ) are the mean, variance, skewness,
and kurtosis for the probability density eτXpf(X)/Ex(eτX).



Remark. If X is normally distributed with mean γ and variance θ then

pf(X) =
1√
2πθ

exp

(
−

(X − γ)2

2θ

)
.

A direct calculation then shows that

Ex
(
eτX

)
=

1√
2πθ

∫
exp

(
−

(X − γ)2

2θ
+ τX

)
dX

=
1√
2πθ

∫
exp

(
−

(X − γ − τθ)2

2θ
+ τγ + 1

2τ
2θ

)
dX

= exp
(
τγ + 1

2τ
2θ
)
,

Therefore K(τ) = log(Ex(eτX)) = τγ + 1
2τ

2θ. This shows that when
X is normally distributed the skewness, kurtosis, and all other higher-order
cumulants vanish. Conversely, if all these higher-order cumulants vanish
then X is normally distributed.



Remark. The cumulent generating function K(τ) is strictly convex over
the interval (τmn, τmx) because K′′(τ) > 0.

Remark. We can also see thatK(τ) is convex over (τmn, τmx) as follows.
Let τ0, τ1 ∈ (τmn, τmx). By applying the Hölder inequality with p = 1

1−s
and p∗ = 1

s , we see that for every s ∈ (0,1) we have

M
(
(1− s)τ0 + sτ1)

)
=
∫
e(1−s)τ0X esτ1X pf(X) dX

≤
(∫

eτ0Xpf(X) dX
)1−s (∫

eτ1Xpf(X) dX
)s

= M(τ0)1−sM(τ1)s .

By taking the logarithm of this inequality we obtain

K((1− s)τ0 + sτ1) ≤ (1− s)K(τ0) + sK(τ1) for every s ∈ (0,1) .

Therefore K(τ) is a convex function over (τmn, τmx).



Estimators from Moment Generating Functions. We will now construct
estimators for γ and θ by using the moment generating function

M(τ) = Ex
(
eτX

)
.

Because R = eX − 1 and Ex(eX) = M(1), we have

µ = Ex(R) = M(1)− 1 .

Because R− µ = eX −M(1) and Ex(e2X) = M(2), we have

ξ = Ex
(
(R− µ)2

)
=
(
M(2)−M(1)2

)
.

These equations can be solved for M(1) and M(2) as

M(1) = 1 + µ , M(2) = (1 + µ)2 + ξ .

Therefore knowing µ and ξ is equivalent to knowing M(1) and M(2).



Because Ex(X) = M ′(0) and Ex(X2) = M ′′(0), we see that

γ = Ex(X) = M ′(0) ,

θ = Ex
(
(X − γ)2

)
= Ex

(
X2

)
− γ2 = M ′′(0)−M ′(0)2 .

Because M(0) = 1, we construct an estimator of M(τ) by interpolating
the values M(0), M(1), and M(2) with a quadratic polynomial as

M̂(τ) = 1 + τ
(
M(1)− 1

)
+ τ(τ − 1)1

2

(
M(2)− 2M(1) + 1

)
= 1 + τµ+ 1

2τ(τ − 1)
(
µ2 + ξ

)
.

By direct calculation we see that

M̂ ′(0) = µ− 1
2(µ2 + ξ) , M̂ ′′(0) = µ2 + ξ . (1)

We then construct estimators γ̂ and θ̂ as functions of µ and ξ by

γ̂ = M̂ ′(0) = µ− 1
2(µ2 + ξ) ,

θ̂ = M̂ ′′(0)− M̂ ′(0)2 = µ2 + ξ −
(
µ− 1

2(µ2 + ξ)
)2
.



By replacing the µ and ξ that appear in the foregoing estimators with the
estimators

µ̂ = µrf(1− 1Tf) + mTf , ξ̂ =
1

1− w̄
fTVf . (2a)

we obtain the estimators

γ̂ = µ̂− 1
2

(
µ̂2 + ξ̂

)
,

θ̂ = µ̂2 + ξ̂ −
(
µ̂− 1

2

(
µ̂2 + ξ̂

))2
,

(2b)

The variance θ is generally positive, but the estimator θ̂ given above is not
intrinsically positive.



Expanding the above expression for θ̂ in powers of µ̂ and ξ̂ yields

θ̂ = ξ̂ + µ̂
(
µ̂2 + ξ̂

)
− 1

4

(
µ̂2 + ξ̂

)2
.

The only term in this expansion that is intrinsically positive is the first one.
Therefore we make the smallness assumptions

|µ̂| � 1 , ξ̂ � 1 ,

and keep only through quadratic statistics — i.e. through quadratic in µ̂
and linear in ξ̂. We thereby arrive at the quadratic estimators

γ̂ = µ̂− 1
2

(
µ̂2 + ξ̂

)
, θ̂ = ξ̂ , (3)

where µ̂ and ξ̂ are given by (2a).

Remark. These smallness assumptions are very easy to check.



Remark. The estimators γ̂ and θ̂ given above have at least three potential
sources of error:

• the estimators M̂ ′(0) and M̂ ′′(0) as functions of µ and ξ given by (1),

• the estimators µ̂ and ξ̂ used in (2) to approximate µ and ξ,

• the smallness assumptions that lead to (3).

The derivation of the first estimators assumes that the returns for each
Markowitz portfolio are described by a density qf(R) that is narrow enough
for some moment beyond the second to exist. All of these approximations
should be examined carefully, especially when markets are highly volatile.



Estimators from Cumulent Generating Functions. We will now give
an alternative derivation of estimators that uses the cumulent generating
function K(τ) = log(M(τ)) and is based on the fact that γ = K′(0)

and θ = K′′(0). It begins by observing that

K(1) = log
(
M(1)

)
= log(1 + µ) ,

K(2) = log
(
M(2)

)
= log

(
(1 + µ)2 + ξ

)
.

Therefore knowing µ and ξ is equivalent to knowing K(1) and K(2).

Because K(0) = 0, we construct an estimator of K(τ) by interpolating
the values K(0), K(1), and K(2) with a quadratic polynomial as

K̂(τ) = τK(1) + τ(τ − 1)1
2

(
K(2)− 2K(1)

)
= τ log(1 + µ) + τ(τ − 1)1

2 log

(
1 +

ξ

(1 + µ)2

)
.



This yields the estimators

γ̂ = K̂′(0) = log(1 + µ)− 1
2 log

(
1 +

ξ

(1 + µ)2

)
,

θ̂ = K̂′′(0) = log

(
1 +

ξ

(1 + µ)2

)
.

(4)

By replacing the µ and ξ that appear above with the estimators µ̂ and ξ̂
given by (2a), we obtain the new estimators

γ̂ = log(1 + µ̂)− 1
2 log

(
1 +

ξ̂

(1 + µ̂)2

)
,

θ̂ = log

(
1 +

ξ̂

(1 + µ̂)2

)
.

(5)

So long as 1 + µ̂ > 0 these estimators will be well defined and θ̂ will be
positive.



If 1 + µ̂ > 0 and we make the smallness assumption

ξ̂

(1 + µ̂)2
� 1 ,

then we obtain the estimators

γ̂ = log(1 + µ̂)− 1
2

ξ̂

(1 + µ̂)2
, θ̂ =

ξ̂

(1 + µ̂)2
. (6)

Finally, if we make the additional smallness assumption

|µ̂| � 1 ,

use the fact

log(1 + µ̂) = µ̂− 1
2µ̂

2 + 1
3µ̂

3 + · · · ,

and keep only through quadratic statistics then we obtain the quadratic
estimators derived earlier in (3)



Remark. The fact that both derivations lead to the same estimators gives
us greater confidence in the validity the quadratic estimators.

Remark. If the Markowitz portfolio specified by f has growth rates X that
are normally distributed with mean γ and variance θ then we have seen
that K(τ) = τγ + 1

2τ
2θ. In this case we have K̂(τ) = K(τ), so the

estimators γ̂ = K̂′(0) and θ̂ = K̂′′(0) are exact.

Remark. The biggest uncertainty associated with these estimators for γ̂
and θ̂ is usually the uncertainty inherited from the estimators for µ̂ and ξ̂.



Exercise. When the quadratic estimators γ̂ and θ̂ are applied to a single
risky asset, they reduce to

γ̂ = µ̂− 1
2

(
µ̂2 + ξ̂

)
, θ̂ = ξ̂ .

Use these to estimate γ and θ for each of the following assets given the
share price history {s(d)}Dd=0. How do these γ̂ and θ̂ compare with the
unbiased estimators for γ and θ that you obtained in the previous problem?

(a) Google, Microsoft, Exxon-Mobil, UPS, GE, and Ford stock in 2009;

(b) Google, Microsoft, Exxon-Mobil, UPS, GE, and Ford stock in 2007;

(c) S&P 500 and Russell 1000 and 2000 index funds in 2009;

(d) S&P 500 and Russell 1000 and 2000 index funds in 2007.

Exercise. Compute γ̂ and θ̂ based on daily data for the Markowitz portfolio
with value equally distributed among the assets in each of the groups given
in the previous exercise.


