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Survey of Markowitz Portfolio Models

1. Introduction. So far we have considered Markowitz portfolios that are
either long, leveraged, unlimited, or solvent. Here we survey the sets of
allocation vectors f for the risky assets of these portfolio models.

These portfolios may or may not contain a risk-free asset. If there is no
risk-free asset then 1Tf = 1. If there are risk-free assets then 1 − 1Tf is
the allocation in the risk-free asset.

These portfolio models are built upon value ratios for portfolios, which are
built from price ratios for individual assets. These notions were used to
construct solvent portfolios. We will review both of these notions and the
construction of these portfolio models.



2. Long Portfolios. For long Markowitz portfolios with no risk-free asset
the set of allocation vectors for the risky assets is

Λ =
{
f ∈ RN : 1Tf = 1 , f ≥ 0

}
. (1)

For long Markowitz portfolios with a risk-free asset the set of allocation
vectors for the risky assets is

Λ+ =
{
f ∈ RN : 1Tf ≤ 1 , f ≥ 0

}
. (2)

It is clear that Λ ⊂ Λ+.



3. Leveraged Portfolios. For Markowitz portfolios with no risk-free asset
and with a leverage limit ` ∈ [0,∞) the set of allocation vectors for the
risky assets is

Π` =
{
f ∈ RN : 1Tf = 1 , |f | ≤ 1 + 2`

}
. (3)

For Markowitz portfolios with a risk-free asset and with a leverage limit
` ∈ [0,∞) the set of allocation vectors for the risky assets is

Π+
` =

{
f ∈ RN : |1− 1Tf |+ |f | ≤ 1 + 2`

}
. (4)

It is clear that Π` ⊂ Π+
` for every ` ∈ [0,∞). It is also clear that if

`, `′ ∈ [0,∞) then ` ≤ `′ implies that

Π` ⊂ Π`′ and Π+
` ⊂ Π+

`′ .

Finally, we saw earlier that

Λ = Π0 and Λ+ = Π+
0 .



4. Unlimited Portfolios. For Markowitz portfolios with no risk-free asset
and no leverage limit the set of allocation vectors for the risky assets is

Π∞ =
{
f ∈ RN : 1Tf = 1

}
. (5)

For Markowitz portfolios with a risk-free asset and with no leverage limit
the set of allocation vectors for the risky assets is

Π+
∞ = RN . (6)

It is clear that Π∞ ⊂ Π+
∞. As the notation suggests, if ` ∈ [0,∞) then

Π` ⊂ Π∞ and Π+
` ⊂ Π+

∞ .

Moreover, Π∞ is the union of all the Π` over ` > 0 and Π+
∞ is the union

of all the Π+
` over ` > 0. These models are easy to analyze because they

have no inequality constraints.



5. Price Ratios of Assets. Given a share price history {si(d)}Dd=0 for
N risky assets indexed by i = 1, · · · , N , we define the price ratio history
{ρi(d)}Dd=0 by

ρi(d) =
si(d)

si(d− 1)
for every i = 1, · · · , N and d = 1, · · · , D .

Because return rates ri(d) were defined by

ri(d) =
si(d)− si(d− 1)

si(d− 1)
=

si(d)

si(d− 1)
− 1 ,

we see that price ratios are related to the return rates by

ρi(d) = 1 + ri(d) for every i = 1, · · · , N and d = 1, · · · , D .

Because share prices typically do not change much on any trading day,
most price ratios will be close to 1. Because each share price is positive,
every price ratio is positive.



6. Value Ratios of Markowitz Portfolios. The Markowitz portfolios with
no risk-free asset are specified by allocation vectors f that satisfy 1Tf = 1.
Earlier we saw that if this portfolio has value history {π(d)}Dd=1 then its
value ratio on trading day d is

π(d)

π(d− 1)
= ρ(d)Tf ,

where ρ(d) is the N -vector of price ratios on day d, which is

ρ(d) =

ρ1(d)
...

ρN(d)

 .

The Markowitz portfolios with a risk-free asset are specified by allocation
vectors f . Its value ratio on trading day d is

π(d)

π(d− 1)
= (1 + µrf)

(
1− 1Tf

)
+ ρ(d)Tf .



7. Solvent Portfolios. For solvent Markowitz portfolios with no risk-free
asset the set of allocation vectors for the risky assets is

Ω =
{
f ∈ RN : 1Tf = 1 , 0 < ρ(d)Tf ∀d

}
. (7)

For solvent Markowitz portfolios with a risk-free asset the set of allocation
vectors for the risky assets is

Ω+ =
{
f ∈ RN : 0 < (1 + µrf)

(
1− 1Tf

)
+ ρ(d)Tf ∀d

}
. (8)

It is clear that Ω ⊂ Ω+. Earlier we saw that

Λ ⊂ Ω and Λ+ ⊂ Ω+ .

The relationships between Π` and Ω and between Π+
` and Ω+ are less

clear when ` > 0. We will identify these relationships with the help of a
more refined set of portfolio models that are also built upon value ratios.



8. Bounded Value-Ratio Portfolios. For Markowitz portfolios with no risk-
free asset and with value ratios bounded within [ρ, ρ] ⊂ (0,∞) the set of
allocation vectors for the risky assets is

Ω[ρ,ρ] =
{
f ∈ RN : 1Tf = 1 , ρ ≤ ρ(d)Tf ≤ ρ ∀d

}
. (9)

For Markowitz portfolios with a risk-free asset and with value ratios bounded
within [ρ, ρ] ⊂ (0,∞) the set of allocation vectors for the risky assets is

Ω+
[ρ,ρ] =

{
f ∈ RN : ρ ≤ (1 + µrf)

(
1− 1Tf

)
+ ρ(d)Tf ≤ ρ ∀d

}
. (10)

It is clear that Ω[ρ,ρ] ⊂ Ω+
[ρ,ρ] for every [ρ, ρ] ⊂ (0,∞). It is also clear that

if [ρ, ρ] and [ρ′, ρ′] are subsets of (0,∞) then [ρ, ρ] ⊂ [ρ′, ρ′] implies that

Ω[ρ,ρ] ⊂ Ω[ρ′,ρ′] and Ω+
[ρ,ρ] ⊂ Ω+

[ρ′,ρ′] .

Finally, it is clear that each of these portfolios are solvent. Specifically, we
have Ω[ρ,ρ] ⊂ Ω and Ω+

[ρ,ρ] ⊂ Ω+ for every [ρ, ρ] ⊂ (0,∞).



9. Bounded Below Value-Ratio Portfolios. For Markowitz portfolios with
no risk-free asset and with value ratios bounded below by ρ ∈ (0,∞) the
set of allocation vectors for the risky assets is

Ωρ =
{
f ∈ RN : 1Tf = 1 , ρ ≤ ρ(d)Tf ∀d

}
. (11)

For Markowitz portfolios with a risk-free asset and with value ratios bounded
below by ρ ∈ (0,∞) the set of allocation vectors for the risky assets is

Ω+
ρ =

{
f ∈ RN : ρ ≤ (1 + µrf)

(
1− 1Tf

)
+ ρ(d)Tf ∀d

}
. (12)

It is clear that Ωρ ⊂ Ω+
ρ for every ρ ∈ (0,∞). It is also clear that if

ρ, ρ′ ∈ (0,∞) then ρ ≤ ρ′ implies that

Ωρ ⊂ Ωρ′ and Ω+
ρ ⊂ Ω+

ρ′ .

Finally, it is clear that each of these portfolios are solvent. Specifically, we
have Ωρ ⊂ Ω and Ω+

ρ ⊂ Ω+ for every ρ ∈ (0,∞).



10. Frontiers. Let Π be the set of allocation vectors for the risky assets
in any Markowitz portfolio model. For example, Π can be Λ, Λ+, Π`, Π+

` ,
Π∞, Π+

∞, Ω, Ω+, Ω[ρ,ρ], Ω+
[ρ,ρ], Ωρ, or Ω+

ρ .

For every f ∈ RN define µ(f) by

µ(f) = (1− 1Tf)µrf + fTm ,

where µrf is either the one-rate or the two-rate model for risk-free rates.
Let µmn(Π) and µmx(Π) be given by

µmn(Π) = inf
{
µ(f) : f ∈ Π

}
,

µmx(Π) = sup
{
µ(f) : f ∈ Π

}
,

The interval (µmn(Π), µmx(Π)) will be bounded for most choices of Π.
Let Iµ(Π) denote its closure.



For every µ ∈ Iµ(Π) define σf(Π) by

σf(µ; Π) = min
{√

fTVf : µ(f) = µ , f ∈ Π
}
.

Then the frontier for Π in the σµ-plane is the set{(
σf(µ; Π) , µ

)
: µ ∈ Iµ(Π)

}
.

This set cannot be computed analytically for most choices of Π. However,
it can be approximated numerically by solving the quadratic programming
problem

arg min
{

1
2f

TVf : µ(f) = µ , f ∈ Π
}
. (13)

To use quadprog we must express the constraints µ(f) = µ and f ∈ Π as
a combination of equality and inequality constraints.



When Π = Λ the quadratic programming problem (13) becomes

arg min
{

1
2f

TVf : mTf = µ , 1Tf = 1 , f ≥ 0
}
.

This is expressed with two equality and N inequality constraints.

When Π = Λ+ then (because the safe investment is the only risk-free
asset that can be held) the quadratic programming problem (13) becomes

arg min
{

1
2f

TVf : (m− µsi1)Tf = µ− µsi , 1
Tf ≤ 1 , f ≥ 0

}
.

This is expressed with one equality and N + 1 inequality constraints.



When Π = Ωρ for some ρ ∈ (0,∞) the quadratic programming problem
(13) becomes

arg min
{

1
2f

TVf : mTf = µ , 1Tf = 1 , ρ ≤ ρ(d)Tf ∀d
}
.

This is expressed with two equality and D inequality constraints.

When Π = Ω[ρ,ρ] for some [ρ, ρ] ⊂ (0,∞) the quadratic programming
problem (13) becomes

arg min
{

1
2f

TVf : mTf = µ , 1Tf = 1 , ρ ≤ ρ(d)Tf ≤ ρ ∀d
}
.

This is expressed with two equality and 2D inequality constraints. When
D = 252 this is 504 inequality constraints.



When Π = Π` for some ` ∈ (0,∞) the quadratic programming problem
(13) becomes

arg min
{

1
2f

TVf : mTf = µ , 1Tf = 1 , |f | ≤ 1 + 2`
}
.

The constraint |f | ≤ 1 + 2` describes a polyhedron in RN with 2N faces.
(The polyhedron is a diamond when N = 2 and is a octahedron when
N = 3.) The constraint can be expressed as the 2N inequality constraints
(one for each face of the polyhedron)

±f1 ± f2 ± · · · ± fN ≤ 1 + 2` ,

where the N signs ± are chosen independently. Thereby the quadratic
programming problem is expressed with two equality and 2N inequality
constraints. When N = 9 this is 512 inequality constraints.


