Lecture 11: Review of nonlinear geometric graph modeling

Radu Balan

Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD

May 2, 2017

Main Problem

Main Problem

Given a weighted graph $G=(\mathcal{V},W)$ with n nodes, find a dimension d and a set of n points $\{y_1,\cdots,y_n\}\subset\mathbb{R}^d$ such that $W_{i,j}=\varphi(\|y_i-y_j\|)$ for some monotonically decreasing function φ . Additionally test how a random graph model explains the data.

Main Problem

Main Problem

Given a weighted graph $G = (\mathcal{V}, W)$ with n nodes, find a dimension d and a set of n points $\{y_1, \dots, y_n\} \subset \mathbb{R}^d$ such that $W_{i,j} = \varphi(\|y_i - y_j\|)$ for some monotonically decreasing function φ . Additionally test how a random graph model explains the data.

Thus we look for a dimension d>0 and a set of points $\{y_1,y_2,\cdots,y_n\}\subset\mathbb{R}^d$ so that all $d_{i,j}=\|y_i-y_j\|$'s are compatible with weighted graph.

Typical weight functions:

- Exponential model: $\varphi(t) = Ce^{-t^2}$, for some C > 0.
- 2 Power law: $\varphi(t) = \frac{C}{t^p}$, for some C > 0 and p > 0.

Analysis

Three studies need to be done:

1 Random graph hypothesis: Sort edges by weight: from the largest weight to the smallest weight. Then compare sample statistics of 3-cliques, 4-cliques and spectral gap to the expected ones for $\mathcal{G}_{n,p}$ and $\Gamma^{n,m}$.

Analysis

Three studies need to be done:

- **1** Random graph hypothesis: Sort edges by weight: from the largest weight to the smallest weight. Then compare sample statistics of 3-cliques, 4-cliques and spectral gap to the expected ones for $\mathcal{G}_{n,p}$ and $\Gamma^{n,m}$.
- ② SDP optimization approach: Solve for the Gram matrix G that optimizes a Semi-Definite Program; Find its effective rank and then perform the SVD of $G = Y^T Y$ to find the geometric graph.

Analysis

Three studies need to be done:

- **1** Random graph hypothesis: Sort edges by weight: from the largest weight to the smallest weight. Then compare sample statistics of 3-cliques, 4-cliques and spectral gap to the expected ones for $\mathcal{G}_{n,p}$ and $\Gamma^{n,m}$.
- ② SDP optimization approach: Solve for the Gram matrix G that optimizes a Semi-Definite Program; Find its effective rank and then perform the SVD of $G = Y^T Y$ to find the geometric graph.
- **1** Laplacian eigenmaps: The geometric graph is obtained by solving the bottom d+1 eigenproblems for the normalized symmetric Laplacian $\tilde{\Delta} = I D^{-1}/WD^{-1/2}$.

Distribution of Cliques Expected Values

Let X_q denote the number of q-cliques in a random graph G. Then the expectation of X_q in $\mathcal{G}_{n,p}$ class is

$$\mathbb{E}[X_q] = \left(\begin{array}{c} n \\ q \end{array}\right) p^{q(q-1)/2}$$

The expectation of X_q in the class $\Gamma^{n,m}$ is approximated by the above formula for $p = \frac{2m}{n(n-1)}$:

$$\mathbb{E}[X_q] \approx \binom{n}{q} \left(\frac{2m}{n(n-1)}\right)^{q(q-1)/2} \sim \theta_q \frac{m^{q(q-1)/2}}{n^{q(q-2)}}$$

$$\mathbb{E}[X_3] \sim \theta \frac{m^3}{n^3} \quad , \quad \mathbb{E}[X_4] \sim \theta \frac{m^6}{n^8}$$

3-Cliques and 4-cliques

Thresholds

Theorem

Let m = m(n) be the number of edges in $\Gamma^{n,m}$.

- If $m \gg n$ (i.e. $\lim_{n\to\infty} \frac{m}{n} = \infty$) then $\lim_{n\to\infty} Prob[G \in \Gamma^{n,m} \text{ has a } 3-clique] \to 1$.
- ② If $m \ll n$ (i.e. $\lim_{n\to\infty} \frac{m}{n} = 0$) then $\lim_{n\to\infty} Prob[G \in \Gamma^{n,m} \text{ has a } 3 clique] \to 0$.

Theorem

Let m = m(n) be the number of edges in $\Gamma^{n,m}$.

- If $m \gg n^{4/3}$ (i.e. $\lim_{n \to \infty} \frac{m}{n^{4/3}} = \infty$) then $\lim_{n \to \infty} Prob[G \in \Gamma^{n,m} \text{ has a } 4-clique] \to 1$.
- ② If $m \ll n^{4/3}$ (i.e. $\lim_{n\to\infty} \frac{m}{n^{4/3}} = 0$) then $\lim_{n\to\infty} Prob[G \in \Gamma^{n,m} \text{ has a } 4-clique] \to 0$.

3-Cliques and 4-Cliques

Behavior at the threshold

In general we obtain a "coarse threshold". Recall a Poisson process X with parameter λ has p.m.f. $Prob[X=k]=e^{-\lambda}\frac{\lambda^k}{k!}$.

Theorem

In $\mathcal{G}_{n,p}$,

- For $p = \frac{c}{n}$, X_3 is asymptotically Poisson with parameter $\lambda = c^3/6$.
- ② For $p = \frac{c}{n^{2/3}}$, X_4 is asymptotically Poisson with parameter $\lambda = c^6/24$.

3-Cliques and 4-Cliques

Behavior at the threshold

In general we obtain a "coarse threshold". Recall a Poisson process X with parameter λ has p.m.f. $Prob[X=k]=e^{-\lambda}\frac{\lambda^k}{k!}$.

Theorem

In $\mathcal{G}_{n,p}$,

- For $p = \frac{c}{n}$, X_3 is asymptotically Poisson with parameter $\lambda = c^3/6$.
- ② For $p = \frac{c}{n^{2/3}}$, X_4 is asymptotically Poisson with parameter $\lambda = c^6/24$.

Theorem

In $\Gamma^{n,m}$,

- For m = cn, X_3 is asymptotically Poisson with parameter $\lambda = 4c^3/3$.
- ② For $m = cn^{4/3}$, X_4 is asymptotically Poisson with parameter $\lambda = 8c^6/3$.

Eigenvalues of Laplacians $\Delta, L, \tilde{\Delta}$

What do we know about the set of eigenvalues of these matrices for a graph G with n vertices?

- $eigs(\tilde{\Delta}) = eigs(L) \subset [0,2].$
- 0 is always an eigenvalue and its multiplicity equals the number of connected components of G,

 $\dim \ker(\Delta) = \dim \ker(L) = \dim \ker(\tilde{\Delta}) = \# \text{connected components}.$

Eigenvalues of Laplacians $\Delta, L, \tilde{\Delta}$

What do we know about the set of eigenvalues of these matrices for a graph G with n vertices?

- **1** $\Delta = \Delta^T \ge 0$ and hence its eigenvalues are non-negative real numbers.
- $eigs(\tilde{\Delta}) = eigs(L) \subset [0,2].$
- 0 is always an eigenvalue and its multiplicity equals the number of connected components of G,

$$\dim \ker(\Delta) = \dim \ker(L) = \dim \ker(\tilde{\Delta}) = \# \text{connected components}.$$

Let $0 = \lambda_0 \le \lambda_1 \le \cdots \le \lambda_{n-1}$ be the eigenvalues of $\tilde{\Delta}$. Denote

$$\lambda(G) = \max_{1 \le i \le n-1} |1 - \lambda_i|.$$

Note $\sum_{i=1}^{n-1} \lambda_i = trace(\tilde{\Delta}) = n$. Hence the average eigenvalue is about 1. $\lambda(G)$ is called the absolute gap and measures the spread of eigenvalues

away from Radu Balan (UMD) MATH 420: Nonlinear modeling

The spectral absolute gap $\lambda(G)$

The main result in [9]) says that for connected graphs w/h.p.:

$$\lambda_1 \geq 1 - \frac{C}{\sqrt{\text{Average Degree}}} = 1 - \frac{C}{\sqrt{p(n-1)}} = 1 - C\sqrt{\frac{n}{2m}}.$$

Theorem (For class $\mathcal{G}_{n,p}$)

Fix $\delta>0$ and let $p>(\frac{1}{2}+\delta)log(n)/n$. Let d=p(n-1) denote the expected degree of a vertex. Let \tilde{G} be the giant component of the Erdös-Rényi graph. For every fixed $\varepsilon>0$, there is a constant $C=C(\delta,\varepsilon)$, so that

$$\lambda(\tilde{G}) \leq \frac{C}{\sqrt{d}}$$

with probability at least $1 - Cn \exp(-(2 - \varepsilon)d) - C \exp(-d^{1/4}log(n))$.

Connectivity threshold: $p \sim \frac{\log(n)}{n}$.

40.49.45.45. 5.00

The spectral absolute gap $\lambda(G)$

The main result in [9] says that for connected graphs w/h.p.:

$$\lambda_1 \geq 1 - \frac{C}{\sqrt{\text{Average Degree}}} = 1 - \frac{C}{\sqrt{p(n-1)}} = 1 - C\sqrt{\frac{n}{2m}}.$$

Theorem (For class $\Gamma^{n,m}$)

Fix $\delta > 0$ and let $m > \frac{1}{2}(\frac{1}{2} + \delta)n\log(n)$. Let $d = \frac{2m}{n}$ denote the expected degree of a vertex. Let \tilde{G} be the giant component of the Erdös-Rényi graph. For every fixed $\varepsilon > 0$, there is a constant $C = C(\delta, \varepsilon)$, so that

$$\lambda(\tilde{G}) \leq \frac{C}{\sqrt{d}}$$

with probability at least $1 - Cn \exp(-(2 - \varepsilon)d) - C \exp(-d^{1/4}log(n))$.

Connectivity threshold: $m \sim \frac{1}{2} n \log(n)$.

Isometric Embeddings with Partial Data Linear constraints

Given any set of vectors $\{y_1, \dots, y_n\}$ and their associated matrix $Y = [y_1| \dots | y_n]$ their invariant to the action of the rigid transformations (translations, rotations, and reflections) is the Gram matrix of the centered system:

$$G = (I - \frac{1}{n} \mathbf{1} \cdot \mathbf{1}^T) Y^T Y (I - \frac{1}{n} \mathbf{1} \cdot \mathbf{1}^T) =: L Y^T Y L , L = I - \frac{1}{n} \mathbf{1} \cdot \mathbf{1}^T.$$

On the other hand, the distance between points i and j can be computed by:

$$d_{i,j}^2 = \|y_i - y_j\|^2 = G_{i,i} - G_{i,j} + G_{j,j} - G_{j,i} = e_{ij}^T G e_{ij}$$

where

$$e_{ij} = \delta_i - \delta_j = [0 \cdots 0 1 \cdots - 1 0 \cdots 0]^T$$

where 1 is on position i, -1 is on position j, and 0 everywhere else.

Almost Isometric Embeddings with Partial Data The SDP Problem

Reference [10] proposes to find the matrix G by solving the following Semi-Definite Program:

$$G = G^T \geq 0 \ |\langle \textit{Ge}_{ij}, \textit{e}_{ij}
angle - ilde{d}_{i,j}^2| \leq arepsilon \;, \; (i,j) \in \Theta$$

where $\tilde{d}_{i,j}^2$ are noisy estimates $d_{i,j}$ and ε is the maximum noise level. The trace promotes low rank in this optimization. However, this is basically a feasibility problem: Decrease ε to the minimum value where a feasible solution exists. With probability 1 that is unique. How to do this: Use CVX with Matlab.

Geometric Graph Embedding

Gram matrix factorization: The Algorithm

Algorithm

Input: Symmetric $n \times n$ Gram matrix G.

- **1** Compute the eigendecomposition of G, $G = Q\Lambda Q^T$ with diagonal of Λ sorted in a descending order;
- 2 Determine the number d of significant positive eigevalues;
- Partition

$$Q = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix}$$
 , and $\Lambda = \begin{bmatrix} \Lambda_1 & 0 \\ 0 & \Lambda_2 \end{bmatrix}$

where Q_1 contains the first d columns of Q, and Λ_1 is the $d \times d$ diagonal matrix of significant positive eigenvalues of G.

Compute:

$$Y = \Lambda_1^{1/2} Q_1^T$$

Output: Dimension d and d \times n matrix Y of vectors $Y = [y_1 | \cdots | y_n]$

Nearly Isometric Embeddings with Partial Data Stability to Noise

[10] proves the following stability result in the case of partial measurements. Here we denote $\Theta_r = \{(i,j) \ , \ \|y_i - y_j\| \le r\}$ the set of all pairs of points at distance at most r.

Theorem

Let $\{y_1,\cdots,y_n\}$ be n nodes distributed uniformly at random in the hypercube $[-0.5,0.5]^d$. Further, assume that we are given noisy measurement of all distances in Θ_r for some $r \geq 10\sqrt{d}(\log(n)/n)^{1/d}$ and the induced geometric graph of edges is connected. Let $\tilde{d}_{i,j}^2 = d_{i,j}^2 + \nu_{i,j}$ with $|\nu_{i,j}| \leq \varepsilon$. Then with high probability, the error distance between the estimated $\hat{Y} = [\hat{y}_1, |\cdots|\hat{y}_n]$ returned by the SDP-based algorithm and the correct coordinate matrix $Y = [y_1|\cdots|y_n]$ is upper bounded as

$$\|L\hat{Y}^T\hat{Y}L - LY^TYL\|_1 \leq C_1(nr^d)^5 \frac{\varepsilon}{r^4}.$$

Optimization Criterion

Assume $\mathcal{G} = (\mathcal{V}, W)$ is a undirected weighted graph with n nodes and weight matrix W.

We interpret $W_{i,j}$ as the *similarity* between nodes i and j. The larger the weight the more similar the nodes, and the closer they are in a geometric graph embedding.

Thus we look for a dimension d>0 and a set of points $\{y_1,y_2,\cdots,y_n\}\subset\mathbb{R}^d$ so that $d_{i,j}=\|y_i-y_j\|$'s is small for large weight $W_{i,j}$. This means we want to minimize

$$J(y_1, y_2, \cdots, y_n) = \sum_{1 \leq i, j \leq n} W_{i,j} ||y_i - y_j||^2,$$

To avoid trivial solution Y = 0 we impose a normalization condition:

$$YDY^T = I_d.$$

The Optimization Problem

Combining the criterion with the constraint:

(LE) : minimize
$$trace \{ Y \Delta Y^T \}$$

subject to $YDY^T = I_d$

we obtained the Laplacian Eigenmap problem.

Good news: The optimizer Y is obtaind by solving an eigenproblem.

Laplacian Eigenmaps Embedding Algorithm

Algorithm (Laplacian Eigenmaps)

Input: Weight matrix W, target dimension d

- Construct the diagonal matrix $D = diag(D_{ii})_{1 \le i \le n}$, where $D_{ii} = \sum_{k=1}^{n} W_{i,k}$.
- **2** Construct the normalized Laplacian $\tilde{\Delta} = I D^{-1/2}WD^{-1/2}$.
- **3** Compute the bottom d+1 eigenvectors e_1, \dots, e_{d+1} , $\tilde{\Delta}e_k = \lambda_k e_k$, $0 = \lambda_1 \dots \lambda_{d+1}$.

Laplacian Eigenmaps Embedding Algorithm-cont's

Algorithm (Laplacian Eigenmaps - cont'd)

• Construct the $d \times n$ matrix Y.

$$Y = \left[\begin{array}{c} e_2 \\ \vdots \\ e_{d+1} \end{array} \right] D^{-1/2}$$

1 The new geometric graph is obtained by converting the columns of Y into n d-dimensional vectors:

$$\left[\begin{array}{cccc} y_1 & | & \cdots & | & y_n \end{array}\right] = Y$$

Output: Set of points $\{y_1, y_2, \dots, y_n\} \subset \mathbb{R}^d$.

References

- B. Bollobás, **Graph Theory. An Introductory Course**, Springer-Verlag 1979. **99**(25), 15879–15882 (2002).
- S. Boyd, L. Vandenberghe, **Convex Optimization**, available online at: http://stanford.edu/boyd/cvxbook/
- F. Chung, **Spectral Graph Theory**, AMS 1997.
- F. Chung, L. Lu, The average distances in random graphs with given expected degrees, Proc. Nat.Acad.Sci. 2002.
- F. Chung, L. Lu, V. Vu, The spectra of random graphs with Given Expected Degrees, Internet Math. 1(3), 257–275 (2004).
- R. Diestel, **Graph Theory**, 3rd Edition, Springer-Verlag 2005.
- 🔋 P. Erdös, A. Rényi, On The Evolution of Random Graphs

- C. Hoffman, M. Kahle, E. Paquette, Spectral Gap of Random Graphs and Applications to Random Topology, arXiv: 1201.0425 [math.CO] 17 Sept. 2014.
- A. Javanmard, A. Montanari, Localization from Incomplete Noisy Distance Measurements, arXiv:1103.1417, Nov. 2012; also ISIT 2011.
- J. Leskovec, J. Kleinberg, C. Faloutsos, Graph Evolution: Densification and Shrinking Diameters, ACM Trans. on Knowl.Disc.Data, $\mathbf{1}(1)$ 2007.
- S.T. Roweis, L.K. Saul, Locally linear embedding, Science 290, 2323–2326 (2000).
- J.B. Tenenbaum, V. de Silva, J.C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science 290, 2319–2323 (2000).