Lecture 11：Review of nonlinear geometric graph modeling

Radu Balan

Department of Mathematics，AMSC，CSCAMM and NWC University of Maryland，College Park，MD

May 2， 2017

Main Problem

Main Problem

Given a weighted graph $G=(\mathcal{V}, W)$ with n nodes, find a dimension d and a set of n points $\left\{y_{1}, \cdots, y_{n}\right\} \subset \mathbb{R}^{d}$ such that $W_{i, j}=\varphi\left(\left\|y_{i}-y_{j}\right\|\right)$ for some monotonically decreasing function φ. Additionally test how a random graph model explains the data.

Main Problem

Main Problem

Given a weighted graph $G=(\mathcal{V}, W)$ with n nodes, find a dimension d and a set of n points $\left\{y_{1}, \cdots, y_{n}\right\} \subset \mathbb{R}^{d}$ such that $W_{i, j}=\varphi\left(\left\|y_{i}-y_{j}\right\|\right)$ for some monotonically decreasing function φ. Additionally test how a random graph model explains the data.

Thus we look for a dimension $d>0$ and a set of points $\left\{y_{1}, y_{2}, \cdots, y_{n}\right\} \subset \mathbb{R}^{d}$ so that all $d_{i, j}=\left\|y_{i}-y_{j}\right\|$'s are compatible with weighted graph.
Typical weight functions:
(1) Exponential model: $\varphi(t)=C e^{-t^{2}}$, for some $C>0$.
(2) Power law: $\varphi(t)=\frac{c}{t^{p}}$, for some $C>0$ and $p>0$.

Analysis

Three studies need to be done:
(1) Random graph hypothesis: Sort edges by weight: from the largest weight to the smallest weight. Then compare sample statistics of 3-cliques, 4-cliques and spectral gap to the expected ones for $\mathcal{G}_{n, p}$ and $\Gamma^{n, m}$.

Analysis

Three studies need to be done:
(1) Random graph hypothesis: Sort edges by weight: from the largest weight to the smallest weight. Then compare sample statistics of 3-cliques, 4-cliques and spectral gap to the expected ones for $\mathcal{G}_{n, p}$ and $\Gamma^{n, m}$.
(2) SDP optimization approach: Solve for the Gram matrix G that optimizes a Semi-Definite Program; Find its effective rank and then perform the SVD of $G=Y^{T} Y$ to find the geometric graph.

Analysis

Three studies need to be done:
(1) Random graph hypothesis: Sort edges by weight: from the largest weight to the smallest weight. Then compare sample statistics of 3-cliques, 4-cliques and spectral gap to the expected ones for $\mathcal{G}_{n, p}$ and $\Gamma^{n, m}$.
(2) SDP optimization approach: Solve for the Gram matrix G that optimizes a Semi-Definite Program; Find its effective rank and then perform the SVD of $G=Y^{T} Y$ to find the geometric graph.
(3) Laplacian eigenmaps: The geometric graph is obtained by solving the bottom $d+1$ eigenproblems for the normalized symmetric Laplacian $\tilde{\Delta}=I-D^{-1 / W D^{-1 / 2} \text {. } . ~ . ~ . ~}$

Distribution of Cliques

Expected Values

Let X_{q} denote the number of q-cliques in a random graph G. Then the expectation of X_{q} in $\mathcal{G}_{n, p}$ class is

$$
\mathbb{E}\left[X_{q}\right]=\binom{n}{q} p^{q(q-1) / 2}
$$

The expectation of X_{q} in the class $\Gamma^{n, m}$ is approximated by the above formula for $p=\frac{2 m}{n(n-1)}$:

$$
\begin{aligned}
\mathbb{E}\left[X_{q}\right] \approx & \binom{n}{q}\left(\frac{2 m}{n(n-1)}\right)^{q(q-1) / 2} \sim \theta_{q} \frac{m^{q(q-1) / 2}}{n^{q(q-2)}} \\
& \mathbb{E}\left[X_{3}\right] \sim \theta \frac{m^{3}}{n^{3}} \quad, \quad \mathbb{E}\left[X_{4}\right] \sim \theta \frac{m^{6}}{n^{8}}
\end{aligned}
$$

3-Cliques and 4-cliques Thresholds

Theorem
Let $m=m(n)$ be the number of edges in $\Gamma^{n, m}$.
(1) If $m \gg n$ (i.e. $\lim _{n \rightarrow \infty} \frac{m}{n}=\infty$) then $\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \Gamma^{n, m}\right.$ has a 3 - clique $] \rightarrow 1$.
(2) If $m \ll n$ (i.e. $\lim _{n \rightarrow \infty} \frac{m}{n}=0$) then $\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \Gamma^{n, m}\right.$ has a 3 - clique $] \rightarrow 0$.

Theorem
Let $m=m(n)$ be the number of edges in $\Gamma^{n, m}$.
(1) If $m \gg n^{4 / 3}$ (i.e. $\lim _{n \rightarrow \infty} \frac{m}{n^{4 / 3}}=\infty$) then $\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \Gamma^{n, m}\right.$ has a 4 - clique $] \rightarrow 1$.
(2) If $m \ll n^{4 / 3}$ (i.e. $\lim _{n \rightarrow \infty} \frac{m}{n^{4 / 3}}=0$) then $\lim _{n \rightarrow \infty} \operatorname{Prob}\left[G \in \Gamma^{n, m}\right.$ has a 4 - clique $] \rightarrow 0$.

3-Cliques and 4-Cliques
 Behavior at the threshold

In general we obtain a "coarse threshold". Recall a Poisson process X with parameter λ has p.m.f. $\operatorname{Prob}[X=k]=e^{-\lambda} \frac{\lambda^{k}}{k!}$.

Theorem

In $\mathcal{G}_{n, p}$,
(1) For $p=\frac{c}{n}, X_{3}$ is asymptotically Poisson with parameter $\lambda=c^{3} / 6$.
(2) For $p=\frac{c}{n^{2 / 3}}, X_{4}$ is asymptotically Poisson with parameter $\lambda=c^{6} / 24$.

3-Cliques and 4-Cliques
 Behavior at the threshold

In general we obtain a "coarse threshold". Recall a Poisson process X with parameter λ has p.m.f. $\operatorname{Prob}[X=k]=e^{-\lambda} \frac{\lambda^{k}}{k!}$.

Theorem

In $\mathcal{G}_{n, p}$,
(1) For $p=\frac{c}{n}, X_{3}$ is asymptotically Poisson with parameter $\lambda=c^{3} / 6$.
(2) For $p=\frac{c}{n^{2 / 3}}, X_{4}$ is asymptotically Poisson with parameter $\lambda=c^{6} / 24$.

Theorem

$\ln \Gamma^{n, m}$,
(1) For $m=c n, X_{3}$ is asymptotically Poisson with parameter $\lambda=4 c^{3} / 3$.
(2) For $m=c n^{4 / 3}, X_{4}$ is asymptotically Poisson with parameter $\lambda=8 c^{6} / 3$.

Eigenvalues of Laplacians
 $\Delta, L, \bar{\Delta}$

What do we know about the set of eigenvalues of these matrices for a graph G with n vertices?
(1) $\Delta=\Delta^{T} \geq 0$ and hence its eigenvalues are non-negative real numbers.
(2) $\operatorname{eigs}(\tilde{\Delta})=\operatorname{eigs}(L) \subset[0,2]$.
(3) 0 is always an eigenvalue and its multiplicity equals the number of connected components of G,

$$
\operatorname{dim} \operatorname{ker}(\Delta)=\operatorname{dim} \operatorname{ker}(L)=\operatorname{dim} \operatorname{ker}(\tilde{\Delta})=\# \text { connected components. }
$$

Eigenvalues of Laplacians
 $\Delta, L, \bar{\Delta}$

What do we know about the set of eigenvalues of these matrices for a graph G with n vertices?
(1) $\Delta=\Delta^{T} \geq 0$ and hence its eigenvalues are non-negative real numbers.
(3) $\operatorname{eigs}(\tilde{\Delta})=\operatorname{eigs}(L) \subset[0,2]$.
(0) 0 is always an eigenvalue and its multiplicity equals the number of connected components of G,
$\operatorname{dim} \operatorname{ker}(\Delta)=\operatorname{dim} \operatorname{ker}(L)=\operatorname{dim} \operatorname{ker}(\tilde{\Delta})=\#$ connected components.
Let $0=\lambda_{0} \leq \lambda_{1} \leq \cdots \leq \lambda_{n-1}$ be the eigenvalues of $\tilde{\Delta}$. Denote

$$
\lambda(G)=\max _{1 \leq i \leq n-1}\left|1-\lambda_{i}\right| .
$$

Note $\sum_{i=1}^{n-1} \lambda_{i}=\operatorname{trace}(\tilde{\Delta})=n$. Hence the average eigenvalue is about 1 . $\lambda(G)$ is called the absolute gap and measures the spread of eigenvalues awav from 1

The spectral absolute gap $\lambda(G)$

The main result in [9]) says that for connected graphs w/h.p.:

$$
\lambda_{1} \geq 1-\frac{C}{\sqrt{\text { Average Degree }}}=1-\frac{C}{\sqrt{p(n-1)}}=1-C \sqrt{\frac{n}{2 m}} .
$$

Theorem (For class $\mathcal{G}_{n, p}$)

Fix $\delta>0$ and let $p>\left(\frac{1}{2}+\delta\right) \log (n) / n$. Let $d=p(n-1)$ denote the expected degree of a vertex. Let \tilde{G} be the giant component of the Erdös-Rényi graph. For every fixed $\varepsilon>0$, there is a constant $C=C(\delta, \varepsilon)$, so that

$$
\lambda(\tilde{G}) \leq \frac{C}{\sqrt{d}}
$$

with probability at least $1-C n \exp (-(2-\varepsilon) d)-C \exp \left(-d^{1 / 4} \log (n)\right)$.
Connectivity threshold: $p \sim \frac{\log (n)}{n}$.

The spectral absolute gap $\lambda(G)$

The main result in [9] says that for connected graphs w/h.p.:

$$
\lambda_{1} \geq 1-\frac{C}{\sqrt{\text { Average Degree }}}=1-\frac{C}{\sqrt{p(n-1)}}=1-C \sqrt{\frac{n}{2 m}} .
$$

Theorem (For class $\Gamma^{n, m}$)

Fix $\delta>0$ and let $m>\frac{1}{2}\left(\frac{1}{2}+\delta\right) n \log (n)$. Let $d=\frac{2 m}{n}$ denote the expected degree of a vertex. Let \tilde{G} be the giant component of the Erdös-Rényi graph. For every fixed $\varepsilon>0$, there is a constant $C=C(\delta, \varepsilon)$, so that

$$
\lambda(\tilde{G}) \leq \frac{C}{\sqrt{d}}
$$

with probability at least $1-C n \exp (-(2-\varepsilon) d)-C \exp \left(-d^{1 / 4} \log (n)\right)$.
Connectivity threshold: $m \sim \frac{1}{2} n \log (n)$.

Isometric Embeddings with Partial Data

Linear constraints

Given any set of vectors $\left\{y_{1}, \cdots, y_{n}\right\}$ and their associated matrix $Y=\left[y_{1}|\cdots| y_{n}\right]$ their invariant to the action of the rigid transformations (translations, rotations, and reflections) is the Gram matrix of the centered system:

$$
G=\left(I-\frac{1}{n} 1 \cdot 1^{T}\right) Y^{T} Y\left(I-\frac{1}{n} 1 \cdot 1^{T}\right)=: L Y^{T} Y L \quad, \quad L=I-\frac{1}{n} 1 \cdot 1^{T} .
$$

On the other hand, the distance between points i and j can be computed by:

$$
d_{i, j}^{2}=\left\|y_{i}-y_{j}\right\|^{2}=G_{i, i}-G_{i, j}+G_{j, j}-G_{j, i}=e_{i j}^{T} G e_{i j}
$$

where

$$
e_{i j}=\delta_{i}-\delta_{j}=[0 \cdots 01 \cdots-10 \cdots 0]^{T}
$$

where 1 is on position $i,-1$ is on position j, and 0 everywhere else.

Almost Isometric Embeddings with Partial Data The SDP Problem

Reference [10] proposes to find the matrix G by solving the following Semi-Definite Program:

$$
\begin{array}{cr}
\min ^{\prime} & \operatorname{trace}(G) \\
\left|\left\langle G e_{i j}, e_{i j}\right\rangle-\tilde{d}_{i, j}^{2}\right| \leq \varepsilon,(i, j) \in \Theta &
\end{array}
$$

where $\tilde{d}_{i, j}^{2}$ are noisy estimates $d_{i, j}$ and ε is the maximum noise level. The trace promotes low rank in this optimization. However, this is basically a feasibility problem: Decrease ε to the minimum value where a feasible solution exists. With probability 1 that is unique. How to do this: Use CVX with Matlab.

Geometric Graph Embedding

Gram matrix factorization: The Algorithm

Algorithm

Input: Symmetric $n \times n$ Gram matrix G.
(1) Compute the eigendecomposition of $G, G=Q \wedge Q^{T}$ with diagonal of Λ sorted in a descending order;
(2) Determine the number d of significant positive eigevalues;
(3) Partition

$$
Q=\left[\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right] \text {, and } \Lambda=\left[\begin{array}{cc}
\Lambda_{1} & 0 \\
0 & \Lambda_{2}
\end{array}\right]
$$

where Q_{1} contains the first d columns of Q, and Λ_{1} is the $d \times d$ diagonal matrix of significant positive eigenvalues of G.
(4) Compute:

$$
Y=\Lambda_{1}^{1 / 2} Q_{1}^{T}
$$

Output: Dimension d and $d \times n$ matrix Y of vectors $Y=\left[y_{1}|\cdots| y_{n}\right]$

Nearly Isometric Embeddings with Partial Data

 Stability to Noise[10] proves the following stability result in the case of partial measurements. Here we denote $\Theta_{r}=\left\{(i, j),\left\|y_{i}-y_{j}\right\| \leq r\right\}$ the set of all pairs of points at distance at most r.

Theorem

Let $\left\{y_{1}, \cdots, y_{n}\right\}$ be n nodes distributed uniformly at random in the hypercube $[-0.5,0.5]^{d}$. Further, assume that we are given noisy measurement of all distances in Θ_{r} for some $r \geq 10 \sqrt{d}(\log (n) / n)^{1 / d}$ and the induced geometric graph of edges is connected. Let $\tilde{d}_{i, j}^{2}=d_{i, j}^{2}+\nu_{i, j}$ with $\left|\nu_{i, j}\right| \leq \varepsilon$. Then with high probability, the error distance between the estimated $\hat{Y}=\left[\hat{y}_{1},|\cdots| \hat{y}_{n}\right]$ returned by the SDP-based algorithm and the correct coordinate matrix $Y=\left[y_{1}|\cdots| y_{n}\right]$ is upper bounded as

$$
\left\|L \hat{Y}^{T} \hat{Y} L-L Y^{T} Y L\right\|_{1} \leq C_{1}\left(n r^{d}\right)^{5} \frac{\varepsilon}{r^{4}}
$$

Optimization Criterion

Assume $\mathcal{G}=(\mathcal{V}, W)$ is a undirected weighted graph with n nodes and weight matrix W.
We interpret $W_{i, j}$ as the similarity between nodes i and j. The larger the weight the more similar the nodes, and the closer they are in a geometric graph embedding.
Thus we look for a dimension $d>0$ and a set of points $\left\{y_{1}, y_{2}, \cdots, y_{n}\right\} \subset \mathbb{R}^{d}$ so that $d_{i, j}=\left\|y_{i}-y_{j}\right\|$'s is small for large weight $W_{i, j}$. This means we want to minimize

$$
J\left(y_{1}, y_{2}, \cdots, y_{n}\right)=\sum_{1 \leq i, j \leq n} W_{i, j}\left\|y_{i}-y_{j}\right\|^{2}
$$

To avoid trivial solution $Y=0$ we impose a normalization condition:

$$
Y D Y^{T}=I_{d}
$$

The Optimization Problem

Combining the criterion with the constraint:

$$
\left.(L E): \begin{array}{ll}
\text { minimize } & \operatorname{trace}\left\{Y \Delta Y^{T}\right\} \\
\text { subject to } Y D Y^{T}=I_{d}
\end{array}\right\}
$$

we obtained the Laplacian Eigenmap problem.

Good news: The optimizer Y is obtaind by solving an eigenproblem.

Laplacian Eigenmaps Embedding

Algorithm

Algorithm (Laplacian Eigenmaps)

Input: Weight matrix W, target dimension d
(1) Construct the diagonal matrix $D=\operatorname{diag}\left(D_{i i}\right)_{1 \leq i \leq n}$, where $D_{i i}=\sum_{k=1}^{n} W_{i, k}$.
(2) Construct the normalized Laplacian $\tilde{\Delta}=I-D^{-1 / 2} W D^{-1 / 2}$.
(3) Compute the bottom $d+1$ eigenvectors $e_{1}, \cdots, e_{d+1}, \tilde{\Delta} e_{k}=\lambda_{k} e_{k}$, $0=\lambda_{1} \cdots \lambda_{d+1}$.

Laplacian Eigenmaps Embedding

Algorithm-cont's

Algorithm (Laplacian Eigenmaps - cont'd)

(9) Construct the $d \times n$ matrix Y,

$$
Y=\left[\begin{array}{c}
e_{2} \\
\vdots \\
e_{d+1}
\end{array}\right] D^{-1 / 2}
$$

(0) The new geometric graph is obtained by converting the columns of Y into $n d$-dimensional vectors:

$$
\left[\begin{array}{lllll}
y_{1} & \mid & \cdots & y_{n}
\end{array}\right]=Y
$$

Output: Set of points $\left\{y_{1}, y_{2}, \cdots, y_{n}\right\} \subset \mathbb{R}^{d}$.

References

圊 B．Bollobás，Graph Theory．An Introductory Course， Springer－Verlag 1979．99（25），15879－15882（2002）．

S．Boyd，L．Vandenberghe，Convex Optimization，available online at： http：／／stanford．edu／boyd／cvxbook／

國 F．Chung，Spectral Graph Theory，AMS 1997.
F．Chung，L．Lu，The average distances in random graphs with given expected degrees，Proc．Nat．Acad．Sci． 2002.

围 F．Chung，L．Lu，V．Vu，The spectra of random graphs with Given Expected Degrees，Internet Math．1（3），257－275（2004）．

R R．Diestel，Graph Theory，3rd Edition，Springer－Verlag 2005.
（ P．Erdös，A．Rényi，On The Evolution of Random Graphs
－G．Grimmett，Probability on Graphs．Random Processes on Graphs and Lattices，Cambridge Press 2010.

R．Hoffman，M．Kahle，E．Paquette，Spectral Gap of Random Graphs and Applications to Random Topology，arXiv： 1201.0425 ［math．CO］ 17 Sept． 2014.

E A．Javanmard，A．Montanari，Localization from Incomplete Noisy Distance Measurements，arXiv：1103．1417，Nov．2012；also ISIT 2011.

嗇 J．Leskovec，J．Kleinberg，C．Faloutsos，Graph Evolution：Densification and Shrinking Diameters，ACM Trans．on Knowl．Disc．Data，1（1） 2007.

图 S．T．Roweis，L．K．Saul，Locally linear embedding，Science 290， 2323－2326（2000）．

围 J．B．Tenenbaum，V．de Silva，J．C．Langford，A global geometric framework for nonlinear dimensionality reduction，Science 290， 2319－2323（2000）．

