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Input Data
It is assumed that there is a set of points {x1, · · · , xn} ⊂ RN , however
either partial, or different information is available:

1 Geometric Graph: For a threshold τ ≥ 0, Gτ = (V, E , µ) where V is
the set of n vertices (nodes), E is the set of edges between nodes i
and j if ‖xi − xj‖ ≤ τ and µ : E → R the set of distances ‖xi − xj‖
between nodes connected by en edge.

2 Weighted graph: G = (V,W ) a undirected weighted graph with n
nodes and weight matrix W , where Wi ,j is inverse monotonically
dependent to distances ‖xi − xj‖; the smaller the distance ‖xi − xj‖
the larger the weight Wi ,j .

3 Unweighted graph: For a threshold τ ≥ 0, Uτ = (V, E) where V is the
set of n nodes, and E is the set of edges connected node i to node j if
‖xi − xj‖ ≤ τ . Note the distance information is not available.

Thus we look for a dimension d > 0 and a set of points
{y1, y2, · · · , yn} ⊂ Rd so that all di ,j = ‖yi − yj‖’s are compatible with raw
data as defined above.
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Approaches

Popular Approaches:
1 Laplacian Eigenmaps
2 Local Linear Embeddings (LLE)
3 Isomaps

If points were supposed to belong to a lower dimensional manifold, the
problem is known under the term manifold learning. If the manifold is
linear (affine), then the Principal Component Analysis (PCA) would
suffice. In this respect, these methods can be thought of as nonlinear
PCA. Also known as nonlinear embedding.
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Dimension Reduction using Laplacian Eigenmaps
Idea

First, convert any relevant data into an undirected weighted graph, hence
a symmetric weight matrix W .
The Laplacian eigenmaps solve the following optimization problem:

(LE ) : minimize trace
{

Y ∆Y T
}

subject to YDY T = Id

where ∆ = D −W with D the diagonal matrix Dii =
∑n

k=1 Wi ,k
The d × n matrix Y = [y1| · · · |yn] contains the embedding.
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Dimension Reduction using Laplacian Eigenmaps
Algorithm

Algorithm (Dimension Reduction using Laplacian Eigenmaps)
Input: A geometric graph {x1, x2, · · · , xn} ⊂ RN . Parameters: threshold τ ,
weight coefficient α, and dimension d.

1 Compute the set of pairwise distances ‖xi − xj‖ and convert them
into a set of weights:

Wi ,j =
{

exp(−α‖xi − xj‖2) if ‖xi − xj‖ ≤ τ
0 if otherwise

2 Compute the d + 1 bottom eigenvectors of the normalized Laplacian
matrix ∆̃ = I − D−1/2WD−1/2, ∆̃ek = λkek , 1 ≤ k ≤ d + 1,
0 = λ0 ≤ · · · ≤ λd+1, where D = diag(

∑n
k=1 Wi ,k)1≤i≤n.
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Dimension Reduction using Laplacian Eigenmaps
Algorithm - cont’d

Algorithm (Dimension Reduction using Laplacian Eigenmaps-cont’d)
3 Construct the d × n matrix Y ,

Y =

 eT
2
...

eT
d+1

 D−1/2

4 The new geometric graph is obtained by converting the columns of Y
into n d-dimensional vectors:[

y1 | · · · | yn
]

= Y

Output: {y1, · · · , yn} ⊂ Rd .
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Example

see:
http://www.math.umd.edu/ rvbalan/TEACHING/AMSC663Fall2010/
PROJECTS/P5/index.html
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Dimension Reduction using LLE
The Idea

Presented in [12]. If data is sufficiently dense, we expect that each data
point and its neighbors to lie on or near a (locally) linear patch. We
assume we are given the set {x1, · · · , xn} in the high dimensional space RN .
Step 1. Find a set of local weights wi ,j that best explain the point xi from
its local neighbors:

minimize
∑n

i=1 ‖xi −
∑

j wi ,jxj‖
subject to

∑n
j=1 wi ,j = 1 , i = 1, · · · , n

Step 2. Find the points {y1, · · · , yn} ⊂ Rd that minimize

minimize
∑n

i=1 ‖yi −
∑

j wi ,jyj‖
subject to

∑n
i=1 yi = 0

1
n

∑n
i=1 yi yT

i = Id
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Dimension Reduction using LLE
Algorithm

Algorithm (Dimension Reduction using Locally Linear Embedding)
Input: A geometric graph {x1, x2, · · · , xn} ⊂ RN . Parameters:
neighborhood size K and dimension d.

1 Finding the weight matrix w: For each point i do the following:
1 Find its closest K neighbors, say Vi ;
2 Compute the K × K local covariance matrix C,

Cj,k = 〈xj − xi , xk − xi〉.
3 Solve C · u = 1 for w (1 denotes the K-vector of 1’s).
4 Set wi,j = uj for j ∈ Vi .
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Dimension Reduction using LLE
Algorithm - cont’d

Algorithm (Dimension Reduction using Locally Linear Embedding)
2 Solving the Eigen Problem:

1 Create the (typically sparse) matrix L = (I −W )T (I −W );
2 Find the bottom d + 1 eigenvectors of L (the bottom eigenvector

whould be [1, · · · , 1]T associated to eigenvalue 0) {e1, e2, · · · , ed+1};
3 Discard the last vector and insert all other eigenvectors as rows into

matrix Y

Y =

 eT
2
...

eT
d+1


Output: {y1, · · · , yn} ⊂ Rd as columns from[

y1 | · · · | yn
]

= Y

Radu Balan (UMD) MATH 420: Dimension Reduction April 19, 2017



Problem Formulation Laplacian Eigenmaps Locally Linear Embedding Isomap

Dimension Reduction using Isomaps
The Idea

Presented in [13]. The idea is to first estimate all pairwise distances, and
then use the nearly isometric embedding algorithm with full data we
studied in Lecture 7.
For each node in the graph we define the distance to the nearest K
neighbors using the Euclidean metric. The distance to further nodes is
defined as the geodesic distance w.r.t. these local distances.
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Dimension Reduction using Isomaps
Algorithm

Algorithm (Dimension Reduction using Isomap)
Input: A geometric graph {x1, x2, · · · , xn} ⊂ RN . Parameters:
neighborhood size K and dimension d.

1 Construct the symmetric matrix S of squared pairwise distances:
1 Construct the sparse matrix T , where for each node i find the nearest

K neighbors Vi and set Ti,j = ‖xi − xj‖2, j ∈ Vi .
2 For any pair of two nodes (i , j) compute di,j as the length of the

shortest path,
∑L

p=1 Tkp−1,kp with k0 = i and kL = j .
3 Set Si,j = d2

i,j .
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Dimension Reduction using Isomaps
Algorithm - cont’d

Algorithm (Dimension Reduction using Isomap - cont’d)
2 Compute the Gram matrix G:

ρ = 1
2n 1T · S · 1 , ν = 1

n (S · 1− ρ1)

G = 1
2ν · 1

T + 1
21 · νT − 1

2S

3 Find the top d eigenvectors of G, say e1, · · · , ed , form the matrix Y
and then collect the columns:

Y =

 eT
1
...

eT
d

 =
[

y1 | · · · | yn
]

Output: {y1, · · · , yn} ⊂ Rd .
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