Lecture 9: Laplacian Eigenmaps

Radu Balan

Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD

April 18, 2017

Optimization Criteria

Assume $\mathcal{G}=(\mathcal{V}, W)$ is a undirected weighted graph with n nodes and weight matrix W.
We interpret $W_{i, j}$ as the similarity between nodes i and j. The larger the weight the more similar the nodes, and the closer they are in a geometric graph embedding.
Thus we look for a dimension $d>0$ and a set of points $\left\{y_{1}, y_{2}, \cdots, y_{n}\right\} \subset \mathbb{R}^{d}$ so that $d_{i, j}=\left\|y_{i}-y_{j}\right\|$'s is small for large weight $W_{i, j}$.

Optimization Criteria

Assume $\mathcal{G}=(\mathcal{V}, W)$ is a undirected weighted graph with n nodes and weight matrix W.
We interpret $W_{i, j}$ as the similarity between nodes i and j. The larger the weight the more similar the nodes, and the closer they are in a geometric graph embedding.
Thus we look for a dimension $d>0$ and a set of points $\left\{y_{1}, y_{2}, \cdots, y_{n}\right\} \subset \mathbb{R}^{d}$ so that $d_{i, j}=\left\|y_{i}-y_{j}\right\|$'s is small for large weight $W_{i, j}$.
A natural optimization criterion candidate:

$$
J\left(y_{1}, y_{2}, \cdots, y_{n}\right)=\sum_{1 \leq i, j \leq n} W_{i, j}\left\|y_{i}-y_{j}\right\|^{2}
$$

Optimization Criteria

Lemma

$$
J\left(y_{1}, y_{2}, \cdots, y_{n}\right)=\frac{1}{2} \sum_{1 \leq i, j \leq n} W_{i, j}\left\|y_{i}-y_{j}\right\|^{2}
$$

is convex in $\left(y_{1}, \cdots, y_{n}\right)$.
Proof Idea: Write it as a positive semidefinite quadratic criterion:

$$
J=\sum_{i=1}^{n}\left\|y_{i}\right\|^{2} \sum_{j=1}^{n} W_{i, j}-\sum_{i, j=1}^{n} W_{i, j}\left\langle y_{i}, y_{j}\right\rangle
$$

Let $Y=\left[y_{1}|\cdots| y_{n}\right]$ be the $d \times n$ matrix of coordinates. Let $D=\operatorname{diag}\left(d_{k}\right)$, with $d_{k}=\sum_{i=1}^{n} W_{k, i}$, be a $n \times n$ diagonal matrix. A little algebra shows:

$$
J(Y)=\operatorname{trace}\left\{Y(D-W) Y^{\top}\right\} .
$$

Optimization Criteria

Equivalent forms:

$$
J(Y)=\operatorname{trace}\left\{Y(D-W) Y^{T}\right\}=\operatorname{trace}\left\{Y \Delta Y^{T}\right\}=\operatorname{trace}\{\Delta G\}
$$

where $G=Y^{T} Y$ is the $n \times n$ Gram matrix. Thus: J is quadratic in Y, and positive semidefnite, hence convex.
Also: J is linear in G.

Optimization Criteria

Equivalent forms:

$$
J(Y)=\operatorname{trace}\left\{Y(D-W) Y^{T}\right\}=\operatorname{trace}\left\{Y \Delta Y^{T}\right\}=\operatorname{trace}\{\Delta G\}
$$

where $G=Y^{T} Y$ is the $n \times n$ Gram matrix. Thus: J is quadratic in Y, and positive semidefnite, hence convex.
Also: J is linear in G.
Question: Are there other convex functions in Y that behave similarly?

Optimization Criteria

Equivalent forms:

$$
J(Y)=\operatorname{trace}\left\{Y(D-W) Y^{T}\right\}=\operatorname{trace}\left\{Y \Delta Y^{T}\right\}=\operatorname{trace}\{\Delta G\}
$$

where $G=Y^{T} Y$ is the $n \times n$ Gram matrix. Thus: J is quadratic in Y, and positive semidefnite, hence convex.
Also: J is linear in G.
Question: Are there other convex functions in Y that behave similarly? Answer: Yes! Examples:

$$
J\left(y_{1}, \cdots, y_{n}\right)=\sum_{1 \leq i, j \leq n} W_{i, j}\left\|y_{i}-y_{j}\right\|
$$

Optimization Criteria

Equivalent forms:

$$
J(Y)=\operatorname{trace}\left\{Y(D-W) Y^{T}\right\}=\operatorname{trace}\left\{Y \Delta Y^{T}\right\}=\operatorname{trace}\{\Delta G\}
$$

where $G=Y^{T} Y$ is the $n \times n$ Gram matrix. Thus: J is quadratic in Y, and positive semidefnite, hence convex.
Also: J is linear in G.
Question: Are there other convex functions in Y that behave similarly? Answer: Yes! Examples:

$$
\begin{gathered}
J\left(y_{1}, \cdots, y_{n}\right)=\sum_{1 \leq i, j \leq n} W_{i, j}\left\|y_{i}-y_{j}\right\| \\
J\left(y_{1}, \cdots, y_{n}\right)=\left(\sum_{1 \leq i, j \leq n} W_{i, j}\left\|y_{i}-y_{j}\right\|^{p}\right)^{1 / p}, p \geq 1
\end{gathered}
$$

Constraints

Absent any constraint,

$$
\text { minimize trace }\left\{Y \Delta Y^{\top}\right\}
$$

has solution $Y=0$. To avoid this trivial solution, we impose a normalization constraint.
Choices:

$$
\begin{gathered}
Y Y^{T}=I_{d} \\
Y D Y^{T}=I_{d}
\end{gathered}
$$

What does this mean?

$$
\begin{gathered}
\sum_{k=1}^{n} y_{k} y_{k}^{T}=I_{d} \Rightarrow \text { Parseval frame } \\
\sum_{k=1}^{n} d_{k} y_{k} y_{k}^{T}=I_{d} \Rightarrow \text { Parseval weighted frame }
\end{gathered}
$$

The Optimization Problem

Combining one criterion with one constraint:

called the Laplacian Eigenmap problem.

Alternative problem:

$$
(U n L E): \begin{aligned}
& \text { minimize } \quad \operatorname{trace}\left\{Y \Delta Y^{T}\right\} \\
& \text { subject to } Y Y^{T}=I_{d}
\end{aligned}
$$

called the unnormalized Laplacian eigenmap problem.

The optimization problem

How to solve the Laplacian eigenmap problem:

$$
(L E): \begin{array}{ll}
\text { minimize } & \operatorname{trace}\left\{Y \Delta Y^{T}\right\} \\
\text { subject to } Y D Y^{T}=I_{d}
\end{array}
$$

First note the problem is not convex, because of the equality constraint. How to make it convex? How to solve?

1. First absorb the scaling D into the solution:

$$
\tilde{Y}=Y D^{1 / 2}
$$

Problem becomes:

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{trace}\left\{\tilde{Y} D^{-1 / 2} \Delta D^{-1 / 2} \tilde{Y}^{T}\right\}=\operatorname{trace}\left\{\tilde{Y} \tilde{\Delta} \tilde{Y}^{T}\right\} \\
\text { subject to } & \tilde{Y} \tilde{Y}^{T}=I_{d}
\end{array}
$$

The optimization problem

2. Consider the optimization problem for P :

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{trace}\{\tilde{\Delta} P\} \\
\text { subject to } & P=P^{T} \geq 0 \\
& P \leq I_{n} \\
& \operatorname{trace}(P)=d
\end{array}
$$

Proposition

Claims:
A. The above optimization problem is a convex SDP.
B. At optimum: $P=\tilde{Y}^{T} \tilde{Y}$.

Eigenproblem

The optimum solutions of the (LE) and (UnLE) problems are given by appropriate eigenvectors:

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{trace}\left\{\tilde{Y} \tilde{\Delta} \tilde{Y}^{T}\right\} \\
\text { subject to } & \tilde{Y} \tilde{Y}^{T}=I_{d}
\end{array}
$$

Solution:

$$
\tilde{Y}=\left[\begin{array}{c}
e_{1}^{T} \\
\vdots \\
e_{d}^{T}
\end{array}\right] \quad, \quad \tilde{\Delta} e_{k}=\lambda_{k} e_{k}
$$

where $0=\lambda_{1} \leq \cdots \lambda_{d}$ are the smallest d eigenvalues, and $\left\|e_{k}\right\|=1$ are the normalized eigenvectors.

Generalized Eigenproblem

$$
(L E): \begin{array}{ll}
\text { minimize } & \operatorname{trace}\left\{Y \Delta Y^{T}\right\} \\
\text { subject to } Y D Y^{T}=I_{d}
\end{array} \Rightarrow Y=\tilde{Y} D^{-1 / 2}
$$

the rows of \tilde{Y} are eigenvectors of the normalized Laplacian $\tilde{\Delta} e_{k}=\lambda_{k} e_{k}$. Let f_{k} be the (transpose) rows of Y :

$$
Y=\left[\begin{array}{c}
f_{1}^{T} \\
\vdots \\
f_{d}^{T}
\end{array}\right] \quad, \quad f_{k}=D^{-1 / 2} e_{k}
$$

Thus: $\tilde{\Delta} D^{1 / 2} f_{k}=\lambda_{k} D^{1 / 2} f_{k}$, or: $D^{1 / 2} \tilde{\Delta} D^{1 / 2} f_{k}=\lambda_{k} D f_{k}$, or:

$$
\Delta f_{k}=\lambda_{k} D f_{k}
$$

This is called generalized eigenproblem associated to (Δ, D).

Eigenproblem

Consider the unnormalized Laplacian eigenmap problem:

$$
(U n L E): \begin{array}{ll}
\text { minimize } & \operatorname{trace}\left\{Y \Delta Y^{T}\right\} \\
\text { subject to } \quad Y Y^{T}=I_{d}
\end{array}
$$

The solution $Y^{u n L E}$ is the $d \times n$ matrix whose rows are eigenvectors of the unnormalized Laplacian $\Delta=D-W, \Delta g_{k}=\mu_{k} g_{k},\left\|g_{k}\right\|=1$, $0=\mu_{1} \leq \cdots \leq \mu_{d}$, and

$$
Y^{u n L E}=\left[\begin{array}{c}
g_{1}^{T} \\
\vdots \\
g_{d}^{T}
\end{array}\right]
$$

What eigenspace to choose?

In most implementations one skips the eigenvectors associated to 0 eigenvalue. Why? In the unnormalized case, $g_{1}=\frac{1}{\sqrt{n}}[1,1, \cdots, 1]^{T}$, hence no new information.
In your class projects, skip the bottom eigenvector. This fact is explicitely stated in the problem.

Laplacian Eigenmaps Embedding

Algorithm

Algorithm (Laplacian Eigenmaps)

Input: Weight matrix W, target dimension d
(1) Construct the diagonal matrix $D=\operatorname{diag}\left(D_{i i}\right)_{1 \leq i \leq n}$, where $D_{i i}=\sum_{k=1}^{n} W_{i, k}$.
(2) Construct the normalized Laplacian $\tilde{\Delta}=I-D^{-1 / 2} W D^{-1 / 2}$.
(3) Compute the bottom $d+1$ eigenvectors $e_{1}, \cdots, e_{d+1}, \tilde{\Delta} e_{k}=\lambda_{k} e_{k}$, $0=\lambda_{1} \cdots \lambda_{d+1}$.

Laplacian Eigenmaps Embedding

Algorithm (Laplacian Eigenmaps - cont'd)

(9) Construct the $d \times n$ matrix Y,

$$
Y=\left[\begin{array}{c}
e_{2} \\
\vdots \\
e_{d+1}
\end{array}\right] D^{-1 / 2}
$$

(0) The new geometric graph is obtained by converting the columns of Y into $n d$-dimensional vectors:

$$
\left[\begin{array}{lllll}
y_{1} & \mid & \cdots & y_{n}
\end{array}\right]=Y
$$

Output: Set of points $\left\{y_{1}, y_{2}, \cdots, y_{n}\right\} \subset \mathbb{R}^{d}$.

Example

see:

http://www.math.umd.edu/ rvbalan/TEACHING/AMSC663Fall2010/ PROJECTS/P5/index.html

References

圊 B．Bollobás，Graph Theory．An Introductory Course， Springer－Verlag 1979．99（25），15879－15882（2002）．

S．Boyd，L．Vandenberghe，Convex Optimization，available online at： http：／／stanford．edu／boyd／cvxbook／

國 F．Chung，Spectral Graph Theory，AMS 1997.
F．Chung，L．Lu，The average distances in random graphs with given expected degrees，Proc．Nat．Acad．Sci． 2002.

围 F．Chung，L．Lu，V．Vu，The spectra of random graphs with Given Expected Degrees，Internet Math．1（3），257－275（2004）．

㞒 R．Diestel，Graph Theory，3rd Edition，Springer－Verlag 2005.
固 P．Erdös，A．Rényi，On The Evolution of Random Graphs

- G. Grimmett, Probability on Graphs. Random Processes on Graphs and Lattices, Cambridge Press 2010.

㞘 C. Hoffman, M. Kahle, E. Paquette, Spectral Gap of Random Graphs and Applications to Random Topology, arXiv: 1201.0425 [math.CO] 17 Sept. 2014.
A. Javanmard, A. Montanari, Localization from Incomplete Noisy Distance Measurements, arXiv:1103.1417, Nov. 2012; also ISIT 2011.

囯 J. Leskovec, J. Kleinberg, C. Faloutsos, Graph Evolution: Densification and Shrinking Diameters, ACM Trans. on Knowl.Disc.Data, 1(1) 2007.

