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Optimization Criteria

Assume G = (V, W) is a undirected weighted graph with n nodes and
weight matrix W.

We interpret W ; as the similarity between nodes i and j. The larger the
weight the more similar the nodes, and the closer they are in a geometric
graph embedding.

Thus we look for a dimension d > 0 and a set of points

{y1,¥2," *,y¥a} C R9 so that d;; = ||y; — y;|'s is small for large weight
Wi ;.
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Optimization Criteria

Assume G = (V, W) is a undirected weighted graph with n nodes and
weight matrix W.

We interpret W ; as the similarity between nodes i and j. The larger the
weight the more similar the nodes, and the closer they are in a geometric
graph embedding.

Thus we look for a dimension d > 0 and a set of points

{y1,¥2," *,y¥a} C R9 so that d;; = ||y; — y;|'s is small for large weight
Wi ;.

A natural optimization criterion candidate:

2
J(yla}/2a"'ayn): VVI,]H)/I_)/JH y
1<ij<n
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Optimization Criteria

Lemma

1
J(Y1,}/2,"'a}’n):§ Z VVI,JHyI_yJH2
1<i,j<n

is convex in (yi,-*, Yn)-

Proof Idea: Write it as a positive semidefinite quadratic criterion:
n ) n n
J= 2 Wl 2o Wiy = 32 Wislyi i)
i=1 j=1 ij=1

Let Y = [y1| - - |yn] be the d x n matrix of coordinates. Let D = diag(dy),
with di =371 Wi i, be a n x n diagonal matrix. A little algebra shows:

J(Y) = trace {Y(D-W)YT}.
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Optimization Criteria

Equivalent forms:
J(Y) = trace{Y(D - W)YT} = trace{YAYT} = trace {AG}

where G = YTY is the n x n Gram matrix. Thus: J is quadratic in Y,
and positive semidefnite, hence convex.
Also: J is linear in G.
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Optimization Criteria

Equivalent forms:
J(Y) = trace{Y(D - W)YT} = trace{YAYT} = trace {AG}

where G = YTY is the n x n Gram matrix. Thus: J is quadratic in Y,
and positive semidefnite, hence convex.

Also: J is linear in G.

Question: Are there other convex functions in Y that behave similarly?
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Optimization Criteria

Equivalent forms:
J(Y) = trace{Y(D - W)YT} = trace{YAYT} = trace {AG}

where G = YTY is the n x n Gram matrix. Thus: J is quadratic in Y,
and positive semidefnite, hence convex.
Also: J is linear in G.

Question: Are there other convex functions in Y that behave similarly?
Answer: Yes! Examples:

1<ij<n
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Optimization Criteria

Equivalent forms:
J(Y) = trace{Y(D - W)YT} = trace{YAYT} = trace {AG}

where G = YTY is the n x n Gram matrix. Thus: J is quadratic in Y,
and positive semidefnite, hence convex.
Also: J is linear in G.

Question: Are there other convex functions in Y that behave similarly?
Answer: Yes! Examples:

1<ij<n

1/p
Jyiym) = Do Wijlyi — yllP , p>1

1<ij<n
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Constraints

Absent any constraint,

minimize trace { YA YT}

has solution Y = 0. To avoid this trivial solution, we impose a
normalization constraint.
Choices:
Yy =1,
YDYT =1,
What does this mean?

n
ZykykT =1ly = Parseval frame
k=1

n
Z diyiyl =1y = Parseval weighted frame
k=1
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The Optimization Problem

Combining one criterion with one constraint:

minimize traceiYA YT}

(LE)
subject to YDY' =l
called the Laplacian Eigenmap problem.

Alternative problem:

minimize  trace { YAYT}

UnLE
( ) subject to  YYT = Iy

called the unnormalized Laplacian eigenmap problem.

Radu Balan (UMD) MATH 420: Laplacian Eigenmaps April 19, 2017



Laplacian Eigenmaps
©00000000

The optimization problem

How to solve the Laplacian eigenmap problem:

(LE) minimize traceiYAY }

subject to YDY' =l

First note the problem is not convex, because of the equality constraint.
How to make it convex? How to solve?
1. First absorb the scaling D into the solution:

Y = yD'/?
Problem becomes:

minimize trace{\N/D_l/zAD_l/z\N’T} = trace{\N’A\N’T}
subjectto YYT =1,
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The optimization problem

2. Consider the optimization problem for P:

minimize  trace {AP}

subjectto P=PT >0
P <l
trace(P) = d

Proposition

Claims:
A. The above optimizeitiorl problem is a convex SDP.
B. At optimum: P=YTY.
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Eigenproblem

The optimum solutions of the (LE) and (UnLE) problems are given by
appropriate eigenvectors:

minimize trace{\N/A\N/T}
subject to YYT =1y

Solution:
ef
Yy = s Aek = Akéx
el
where 0 = A1 < --- Ay are the smallest d eigenvalues, and ||ex|| =1 are

the normalized eigenvectors.
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Generalized Eigenproblem

P . T
(LE) minimize traceiYAY }

= Y=VYD1?
subject to YDY' =l

the rows of Y are eigenvectors of the normalized Laplacian Ae, = Agex.
Let fx be the (transpose) rows of Y:
il
Y=1| : | , i=D"1g
Thus: ADY2f, = N\ D2, or: DY2ADY2f, = \\.Df,, or:
Afy = M\ Dfy

This is called generalized eigenproblem associated to (A, D).
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Eigenproblem

Consider the unnormalized Laplacian eigenmap problem:

minimize traceq YA YT}

UnLE
( ) subject to  YYT = Iy
The solution YU"E is the d x n matrix whose rows are eigenvectors of the
unnormalized Laplacian A = D — W, Agk = uxgk, |lgkl] = 1,
0=y <--- < g, and

Radu Balan (UMD) MATH 420: Laplacian Eigenmaps April 19, 2017



Laplacian Eigenmaps
000000000

What eigenspace to choose?

In most implementations one skips the eigenvectors associated to 0
eigenvalue. Why? In the unnormalized case, g1 = %[1, 1,---,1]7, hence
no new information.

In your class projects, skip the bottom eigenvector. This fact is explicitely
stated in the problem.
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Laplacian Eigenmaps Embedding

Algorithm

Algorithm (Laplacian Eigenmaps)
Input: Weight matrix W, target dimension d
@ Construct the diagonal matrix D = diag(Djj)1<i<n, where

Dii = > k-1 Wi

@ Construct the normalized Laplacian A = | — D1/2WD~1/2,

© Compute the bottom d + 1 eigenvectors ey, - -, €411, Aek = A\k€k,
0=MA1--Agy1-
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Laplacian Eigenmaps Embedding

Algorithm-cont’s

Algorithm (Laplacian Eigenmaps - cont'd)
@ Construct the d x n matrix Y,

Y = : B
€d+1

© The new geometric graph is obtained by converting the columns of Y
into n d-dimensional vectors:

[n |l wm]=Y

Output: Set of points {y1,y, -, yn} C RY.
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Example

See:

http://www.math.umd.edu/ rvbalan/ TEACHING/AMSC663Fall2010/
PROJECTS/P5/index.html
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