Lecture 9: Laplacian Eigenmaps

Radu Balan

Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD

April 18, 2017

Assume $\mathcal{G} = (\mathcal{V}, W)$ is a undirected weighted graph with n nodes and weight matrix W.

We interpret $W_{i,j}$ as the *similarity* between nodes i and j. The larger the weight the more similar the nodes, and the closer they are in a geometric graph embedding.

Thus we look for a dimension d>0 and a set of points $\{y_1,y_2,\cdots,y_n\}\subset\mathbb{R}^d$ so that $d_{i,j}=\|y_i-y_j\|$'s is small for large weight $W_{i,j}$.

Assume $\mathcal{G} = (\mathcal{V}, W)$ is a undirected weighted graph with n nodes and weight matrix W.

We interpret $W_{i,j}$ as the *similarity* between nodes i and j. The larger the weight the more similar the nodes, and the closer they are in a geometric graph embedding.

Thus we look for a dimension d>0 and a set of points $\{y_1,y_2,\cdots,y_n\}\subset\mathbb{R}^d$ so that $d_{i,j}=\|y_i-y_j\|$'s is small for large weight $W_{i,j}$.

A natural optimization criterion candidate:

$$J(y_1, y_2, \cdots, y_n) = \sum_{1 \leq i, j \leq n} W_{i,j} ||y_i - y_j||^2,$$

Lemma

$$J(y_1, y_2, \dots, y_n) = \frac{1}{2} \sum_{1 \leq i, j \leq n} W_{i,j} ||y_i - y_j||^2$$

is convex in (y_1, \dots, y_n) .

Proof Idea: Write it as a positive semidefinite quadratic criterion:

$$J = \sum_{i=1}^{n} ||y_i||^2 \sum_{j=1}^{n} W_{i,j} - \sum_{i,j=1}^{n} W_{i,j} \langle y_i, y_j \rangle$$

Let $Y = [y_1| \cdots | y_n]$ be the $d \times n$ matrix of coordinates. Let $D = diag(d_k)$, with $d_k = \sum_{i=1}^n W_{k,i}$, be a $n \times n$ diagonal matrix. A little algebra shows:

$$J(Y) = trace \left\{ Y(D-W)Y^T \right\}.$$

Equivalent forms:

$$J(Y) = trace \left\{ Y(D - W)Y^T \right\} = trace \left\{ Y\Delta Y^T \right\} = trace \left\{ \Delta G \right\}$$

where $G = Y^T Y$ is the $n \times n$ Gram matrix. Thus: J is quadratic in Y, and positive semidefnite, hence convex.

Also: J is linear in G.

Equivalent forms:

$$J(Y) = trace \left\{ Y(D - W)Y^T \right\} = trace \left\{ Y\Delta Y^T \right\} = trace \left\{ \Delta G \right\}$$

where $G = Y^T Y$ is the $n \times n$ Gram matrix. Thus: J is quadratic in Y, and positive semidefnite, hence convex.

Also: J is linear in G.

Question: Are there other convex functions in *Y* that behave similarly?

Equivalent forms:

$$J(Y) = trace \left\{ Y(D - W)Y^T \right\} = trace \left\{ Y\Delta Y^T \right\} = trace \left\{ \Delta G \right\}$$

where $G = Y^T Y$ is the $n \times n$ Gram matrix. Thus: J is quadratic in Y, and positive semidefnite, hence convex.

Also: J is linear in G.

Question: Are there other convex functions in Y that behave similarly? Answer: Yes! Examples:

$$J(y_1, \dots, y_n) = \sum_{1 \le i, i \le n} W_{i,j} ||y_i - y_j||$$

Equivalent forms:

$$J(Y) = trace \left\{ Y(D - W)Y^T \right\} = trace \left\{ Y\Delta Y^T \right\} = trace \left\{ \Delta G \right\}$$

where $G = Y^T Y$ is the $n \times n$ Gram matrix. Thus: J is quadratic in Y, and positive semidefnite, hence convex.

Also: J is linear in G.

Question: Are there other convex functions in Y that behave similarly?

$$J(y_1, \dots, y_n) = \sum_{1 \le i,j \le n} W_{i,j} ||y_i - y_j||$$

$$J(y_1, \dots, y_n) = \left(\sum_{1 \leq i, j \leq n} W_{i,j} \|y_i - y_j\|^p\right)^{1/p} , \quad p \geq 1$$

Constraints

Absent any constraint,

minimize trace
$$\left\{ Y \Delta Y^T \right\}$$

has solution Y = 0. To avoid this trivial solution, we impose a normalization constraint.

Choices:

$$YY^T = I_d$$

 $YDY^T = I_d$

What does this mean?

$$\sum_{k=1}^{n} y_k y_k^T = I_d \quad \Rightarrow \quad \text{Parseval frame}$$

$$\sum_{k=1}^{n} d_k y_k y_k^T = I_d \quad \Rightarrow \quad \text{Parseval weighted frame}$$

The Optimization Problem

Combining one criterion with one constraint:

(LE): minimize
$$trace \{ Y \Delta Y^T \}$$

subject to $YDY^T = I_d$

called the Laplacian Eigenmap problem.

Alternative problem:

(UnLE) : minimize trace
$$\{Y\Delta Y^T\}$$
 subject to $YY^T = I_d$

called the unnormalized Laplacian eigenmap problem.

The optimization problem

How to solve the Laplacian eigenmap problem:

(LE) : minimize trace
$$\{Y\Delta Y^T\}$$

subject to $YDY^T = I_d$

First note the problem is not convex, because of the equality constraint.

How to make it convex? How to solve?

1. First absorb the scaling *D* into the solution:

$$\tilde{Y} = YD^{1/2}$$

Problem becomes:

$$\begin{array}{ll} \text{minimize} & \textit{trace} \left\{ \tilde{Y} D^{-1/2} \Delta D^{-1/2} \tilde{Y}^T \right\} = \textit{trace} \left\{ \tilde{Y} \tilde{\Delta} \tilde{Y}^T \right\} \\ \text{subject to} & \tilde{Y} \tilde{Y}^T = I_d \end{array}$$

The optimization problem

2. Consider the optimization problem for *P*:

$$\begin{array}{ll} \text{minimize} & \textit{trace} \left\{ \tilde{\Delta}P \right\} \\ \text{subject to} & P = P^T \geq 0 \\ & P \leq I_n \\ & \textit{trace}(P) = d \end{array}$$

Proposition

Claims:

A. The above optimization problem is a convex SDP.

B. At optimum: $P = \tilde{Y}^T \tilde{Y}$.

Eigenproblem

The optimum solutions of the (LE) and (UnLE) problems are given by appropriate eigenvectors:

$$\begin{array}{ll} \text{minimize} & \textit{trace} \left\{ \tilde{Y} \tilde{\Delta} \tilde{Y}^T \right\} \\ \text{subject to} & \tilde{Y} \tilde{Y}^T = I_d \end{array}$$

Solution:

$$ilde{Y} = \left[egin{array}{c} \mathbf{e}_1^T \ dots \ \mathbf{e}_d^T \end{array}
ight] \;\;\;,\;\;\; ilde{\Delta} \mathbf{e}_k = \lambda_k \mathbf{e}_k$$

where $0 = \lambda_1 \leq \cdots \lambda_d$ are the smallest d eigenvalues, and $||e_k|| = 1$ are the normalized eigenvectors.

Generalized Eigenproblem

(LE):
$$\begin{array}{ccc} \text{minimize} & trace \left\{ Y \Delta Y^T \right\} \\ \text{subject to} & YDY^T = I_d \end{array} \Rightarrow Y = \tilde{Y}D^{-1/2}$$

the rows of \tilde{Y} are eigenvectors of the normalized Laplacian $\tilde{\Delta}e_k = \lambda_k e_k$. Let f_k be the (transpose) rows of Y:

$$Y = \begin{bmatrix} f_1^T \\ \vdots \\ f_d^T \end{bmatrix} , f_k = D^{-1/2} e_k$$

Thus: $\tilde{\Delta}D^{1/2}f_k = \lambda_k D^{1/2}f_k$, or: $D^{1/2}\tilde{\Delta}D^{1/2}f_k = \lambda_k Df_k$, or:

$$\Delta f_k = \lambda_k D f_k$$

This is called generalized eigenproblem associated to (Δ, D) .

Eigenproblem

Consider the unnormalized Laplacian eigenmap problem:

(UnLE) : minimize
$$trace \{ Y \Delta Y^T \}$$
 subject to $YY^T = I_d$.

The solution Y^{unLE} is the $d \times n$ matrix whose rows are eigenvectors of the unnormalized Laplacian $\Delta = D - W$, $\Delta g_k = \mu_k g_k$, $\|g_k\| = 1$, $0 = \mu_1 \leq \cdots \leq \mu_d$, and

$$Y^{unLE} = \begin{bmatrix} g_1' \\ \vdots \\ g_d^T \end{bmatrix}.$$

What eigenspace to choose?

In most implementations one skips the eigenvectors associated to 0 eigenvalue. Why? In the unnormalized case, $g_1 = \frac{1}{\sqrt{n}}[1,1,\cdots,1]^T$, hence no new information.

In your class projects, skip the bottom eigenvector. This fact is explicitely stated in the problem.

Laplacian Eigenmaps Embedding Algorithm

Algorithm (Laplacian Eigenmaps)

Input: Weight matrix W, target dimension d

- Construct the diagonal matrix $D = diag(D_{ii})_{1 \le i \le n}$, where $D_{ii} = \sum_{k=1}^{n} W_{i,k}$.
- ② Construct the normalized Laplacian $\tilde{\Delta} = I D^{-1/2}WD^{-1/2}$.
- **3** Compute the bottom d+1 eigenvectors e_1, \dots, e_{d+1} , $\tilde{\Delta}e_k = \lambda_k e_k$, $0 = \lambda_1 \dots \lambda_{d+1}$.

Laplacian Eigenmaps Embedding Algorithm-cont's

Algorithm (Laplacian Eigenmaps - cont'd)

4 Construct the $d \times n$ matrix Y,

$$Y = \left[\begin{array}{c} e_2 \\ \vdots \\ e_{d+1} \end{array} \right] D^{-1/2}$$

5 The new geometric graph is obtained by converting the columns of Y into n d-dimensional vectors:

$$\left[\begin{array}{cccc} y_1 & | & \cdots & | & y_n \end{array}\right] = Y$$

Output: Set of points $\{y_1, y_2, \dots, y_n\} \subset \mathbb{R}^d$.

Example

see:

 $\label{lem:http://www.math.umd.edu/rvbalan/TEACHING/AMSC663Fall2010/PROJECTS/P5/index.html} \\$

References

- B. Bollobás, **Graph Theory. An Introductory Course**, Springer-Verlag 1979. **99**(25), 15879–15882 (2002).
- S. Boyd, L. Vandenberghe, **Convex Optimization**, available online at: http://stanford.edu/boyd/cvxbook/
- F. Chung, **Spectral Graph Theory**, AMS 1997.
- F. Chung, L. Lu, The average distances in random graphs with given expected degrees, Proc. Nat. Acad. Sci. 2002.
- F. Chung, L. Lu, V. Vu, The spectra of random graphs with Given Expected Degrees, Internet Math. 1(3), 257–275 (2004).
- R. Diestel, **Graph Theory**, 3rd Edition, Springer-Verlag 2005.
- P. Erdös, A. Rényi, On The Evolution of Random Graphs

- G. Grimmett, **Probability on Graphs. Random Processes on Graphs and Lattices**, Cambridge Press 2010.
- C. Hoffman, M. Kahle, E. Paquette, Spectral Gap of Random Graphs and Applications to Random Topology, arXiv: 1201.0425 [math.CO] 17 Sept. 2014.
- A. Javanmard, A. Montanari, Localization from Incomplete Noisy Distance Measurements, arXiv:1103.1417, Nov. 2012; also ISIT 2011.
- J. Leskovec, J. Kleinberg, C. Faloutsos, Graph Evolution: Densification and Shrinking Diameters, ACM Trans. on Knowl.Disc.Data, $\mathbf{1}(1)$ 2007.