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Convex Optimizations Duality Theory

Convex Sets. Convex Functions

A set S ⊂ Rn is called a convex set if for any points x , y ∈ S the line
segment [x , y ] := {tx + (1− t)y , 0 ≤ t ≤ 1} is included in S, [x , y ] ⊂ S.

A function f : S → R is called convex if for any x , y ∈ S and 0 ≤ t ≤ 1,
f (t x + (1− t)y) ≤ t f (x) + (1− t)f (y).
Here S is supposed to be a convex set in Rn.
Equivalently, f is convex if its epigraph is a convex set in Rn+1. Epigraph:
{(x , u) ; x ∈ S, u ≥ f (x)}.

A function f : S → R is called strictly convex if for any x 6= y ∈ S and
0 < t < 1, f (t x + (1− t)y) < t f (x) + (1− t)f (y).
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Convex Optimization Problems

The general form of a convex optimization problem:

min
x∈S

f (x)

where S is a closed convex set, and f is a convex function on S.
Properties:

1 Any local minimum is a global minimum. The set of minimizers is a
convex subset of S.

2 If f is strictly convex, then the minimizer is unique: there is only one
local minimizer.

In general S is defined by equality and inequality constraints:
S = {gi (x) ≤ 0 , 1 ≤ i ≤ p} ∩ {hj(x) = 0 , 1 ≤ j ≤ m}. Typically hj are
required to be affine: hj(x) = aT x + b.
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Convex Programs

The hiarchy of convex optimization problems:
1 Linear Programs: Linear criterion with linear constraints
2 Quadratic Problems: Quadratic Programs (QP); Quadratically

Constrained Quadratic Problems (QCQP); Second-Order Cone
Program (SOCP)

3 Semi-Definite Programs(SDP)
Popular approach/solution: Primal-dual interior-point using Newton’s
method (second order)
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Linear Programs
LP and standard LPs

Linear Program:
minimize cT x + d
subject to Gx ≤ h

Ax = b

where G ∈ Rm×n, A ∈ Rp×n.

Standard form LP:

minimize cT x
subject to Ax = b

x ≥ 0

Inequality form LP:

minimize cT x
subject to Ax ≤ b
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Linear Program: Example
Basis Pursuit

Cosnider a system of linear equations: Ax = b with more columns
(unknowns) than rows (equations), i.e. A is ”fat”. We want to find the
”sparsest” solution

minimize ‖x‖0
subject to Ax = b

where ‖x‖0 denotes the number of nonzero entries in x (i.e. the support
size). This is a non-convex, NP-hard problem. Instead we solve its
so-called ”convexification”:

minimize ‖x‖1
subject to Ax = b

where ‖x‖1 =
∑n

k=1 |xk |. It is shown that, under some sonditions (RIP)
the solutions of the two problems coincide.
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Linear Program: Example
Basis Pursuit

How to turn:
minimize ‖x‖1
subject to Ax = b

into a LP?

Method 1. Use the following auxiliary variables: y = (yk)1≤k≤n so that
|xk | ≤ yk , or xk − yk ≤ 0, −xk − yk ≤ 0:

minimize 1T y
subject to Ax = b

x − y ≤ 0
−x − y ≤ 0
−y ≤ 0
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Linear Program: Example
Basis Pursuit

How to turn:
minimize ‖x‖1
subject to Ax = b

into a LP?

Method 2. Use the following substitutions (positive and negative parts):
xk = uk − vk , |xk | = uk + vk , with uk , vk ≥ 0:

minimize 1T u + 1T v
subject to A(u − v) = b

−u ≤ 0
−v ≤ 0
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Quadratic Problems
QP: Quadratic Programs

minimize 1
2xT PX + qT x + r

subject to Gx ≤ h
Ax = b

where P = PT ≥ 0, P ∈ Rn×n, G ∈ Rm×n, A ∈ Rp×n.

Example: Constrained Regression (constrained least-squares).
Typical LS problem: min ‖Ax − b‖22 = min xT AX − 2bT Ax + bT b has
solution:

x = A†b = (AT A)−1AT b.

Constrained least-squares:

minimize ‖Ax − b‖22
subject to li ≤ xi ≤ ui , i = 1, · · · , n

Radu Balan (UMD) Geometric Embeddings April 12, 2017



Convex Optimizations Duality Theory

Quadratic Problems
QP: Quadratic Programs

minimize 1
2xT PX + qT x + r

subject to Gx ≤ h
Ax = b

where P = PT ≥ 0, P ∈ Rn×n, G ∈ Rm×n, A ∈ Rp×n.
Example: Constrained Regression (constrained least-squares).
Typical LS problem: min ‖Ax − b‖22 = min xT AX − 2bT Ax + bT b has
solution:

x = A†b = (AT A)−1AT b.

Constrained least-squares:

minimize ‖Ax − b‖22
subject to li ≤ xi ≤ ui , i = 1, · · · , n

Radu Balan (UMD) Geometric Embeddings April 12, 2017



Convex Optimizations Duality Theory

Quadratic Problems
QCQP: Quadratically Constrained Quadratic Programs

minimize 1
2xT PX + qT x + r

subject to 1
2xT Pi x + qT

i x + ri ≤ 0, i = 1, · · · ,m
Ax = b

where P = PT ≥ 0, Pi = PT
i ≥ 0, i = 1, · · · ,m, P,Pi ∈ Rn×n, A ∈ Rp×n.

Remark
1. QP can be solved by QCQP: set Pi = 0.
2. Criterion can always be recast in a linear form with unknown [x0; x ]:

minimize x0
subject to 1

2xT Px + qT x − x0 + r ≤ 0
1
2xT Pi x + qT

i x + ri ≤ 0, i = 1, · · · ,m
Ax = b
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Quadratic Problems
SOCP: Second-Order Cone Programs

minimize f T x
subject to ‖Ai x + bi‖2 ≤ cT

i x + di , i = 1, · · · ,m
Fx = g

where Ai ∈ Rni×n, F ∈ Rp×n.
SOCP is the most general form of a quadratic problem. QCQP: ci = 0
except for i = 0.

Example
The placement problem: Given a set of weights {wij} and of fixed points
{x1, · · · , xL}, find the set of points {xL+1, · · · , xN} that minimize forp ≥ 1:

min
∑

1≤i<j≤N
wij‖xi − xj‖p.

Problem: For p = 2 recast it as a SOCP. For p = 1 it is a LP.
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Semi-Definite Programs
SDP and standard SDP

Semi-Definite Program with unknown x ∈ Rn:

minimize cT x
subject to x1F1 + · · ·+ xnFn + G ≤ 0

Ax = b

where G ,F1, · · · ,Fn are k × k symmetric matrices in Sk , A ∈ Rp×n.

Standard form SDP:

minimize trace(CX )
subject to trace(Ai X ) = bi

X = X T ≥ 0

Inequality form SDP:

minimize cT x
subject to x1A1 + · · · xnAn ≤ B
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CVX
Matlab package

Downloadable from: http://cvxr.com/cvx/ . Follows ”Disciplined” Convex
Programming – à la Boyd [2].

m = 20; n = 10; p = 4;
A = randn(m,n); b = randn(m,1);
C = randn(p,n); d = randn(p,1); e = rand;
cvx_begin

variable x(n)
minimize( norm( A * x - b, 2 ) )
subject to

C * x == d
norm( x, Inf ) <= e

cvx_end

min
Cx = d
‖x‖∞ ≤ e

‖Ax − b‖
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CVX
SDP Example

cvx_begin sdp

variable X(n,n) semidefinite;
minimize trace(X);
subject to
abs(trace(E1*X)-d1)<=epsx;
abs(trace(E2*X)-d2)<=epsx;

cvx_end

minimize trace(X )
subject to |trace(E1X )− d1| ≤ ε

|trace(E2X )− d2| ≤ ε
X = X T ≥ 0
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Dual Problem
Lagrangian

Primal Problem:

p∗ = minimize f0(x)
subject to fi (x) ≤ 0, i = 1, · · · ,m

hi (x) = 0, i = 1, · · · , p

Define the Lagrangian, L : Rn × Rm × Rp → R:

L(x , λ, ν) = f0(x) +
m∑

i=1
λi fi (x) +

p∑
i=1

νi hi (x)

Variables λ ∈ Rm and ν ∈ Rp are called dual variables, or Lagrange
multipliers.
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Dual Problem
Lagrange Dual Function

The Lagrange dual function (or the dual function) is given by:

g(λ, ν) = inf
x∈D

L(x , λ, ν) = inf
x∈D

(
f0(x) +

m∑
i=1

λi fi (x) +
p∑

i=1
νi hi (x)

)

where D ⊂ Rn is the domain of definition of all functions.

Remark
1. Key estimate: For any λ ≥ 0, and any ν,

g(λ, ν) ≤ p∗

because g(λ, ν) = L(x∗, λ, ν) = f0(x∗) + λT f (x∗) + νT h(x∗) ≤ f0(x∗).
2. g(λ, ν) is a concave function regardless of problem convexity.
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Dual Problem
The dual problem

The dual problem is given by:

d∗ = maximize g(λ, ν)
subject to λ ≥ 0

Remark
1. The dual problem is always a convex optimization problem
(maximization of a concave function, with convex constraints).
2. We always have weak duality:

d∗ ≤ p∗
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Dual Problem
The duality gap. Strong duality

The duality gap is p∗ − d∗.
If the primal is a convex optimization problem:

p∗ = minimize f0(x)
subject to fi (x) ≤ 0, i = 1, · · · ,m

Ax = b

and the Slater’s constraint qualification condition holds: there is a feasible
x ∈ relint(D) so that fi (x) < 0, i = 1, · · · ,m, then the strong duality
holds:

d∗ = p∗.

(Slater’s condition is a sufficient, not a necessary condition.)
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The Karush-Kuhn-Tucker (KKT) Conditions
Necessary Conditions

Assume f0, f1, · · · , fm, h1, · · · , hp are differentiable with open domains.
Assume x∗ and (λ∗, ν∗) be any primal and dual optimal points with zero
duality gap. It follows that ∇L(x , λ∗, ν∗)|x=x∗ = 0 and
g(λ∗, ν∗) = L(x∗, λ∗, ν∗) = f0(x∗). We obtain the following set of
equations called the KKT conditions:

fi (x∗) ≤ 0 , i = 1, · · · ,m
hi (x∗) = 0 , i = 1, · · · , p

λ∗i ≥ 0 , i = 1, · · · ,m
λ∗i fi (x∗) = 0 , i = 1, · · · ,m

∇f0(x∗) +
m∑

i=1
λ∗i∇fi (x∗) +

p∑
i=1

ν∗i ∇hi (x∗) = 0

Remark: λ∗i fi (x∗) = 0 for each i are called the complementary slackness
conditions.
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The Karush-Kuhn-Tucker (KKT) Conditions
Sufficient Conditions

Assume the primal problem is convex with h(x) = Ax − b and f0, · · · , fm
differentiable. Assume x̃ , (λ̃, ν̃) satisfy the KKT conditions:

fi (x̃) ≤ 0 , i = 1, · · · ,m
Ax̃ = b , i = 1, · · · , p
λ̃i ≥ 0 , i = 1, · · · ,m

λ̃i fi (x̃) = 0 , i = 1, · · · ,m

∇f0(x̃) +
m∑

i=1
λ̃i∇fi (x̃) + AT ν̃ = 0

Then x̃ and (λ̃, ν̃) are primal and dual optimal with zero duality gap.

A primal-dual interior-point algorithm is an iterative algorithm that
approaches a solution of the KKT system of conditions.
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Primal-Dual Interior-Point Method

Idea: Solve the nonlinear system rt(x , λ, ν) = 0 with

rt(x , λ, ν) =

 ∇f0(x) + Df (x)Tλ+ ATν
−diag(λ)f (x)− (1/t)1

Ax − b

 , f (x) =

 f1(x)
...

fm(x)


and t > 0, using Newton’s method (second order). The search direction is
obtained by solving the linear system: ∇2f0(x) +

∑m
i=1 λi∇2fi (x) Df (x)T AT

−diag(λ)Df (x) −diag(f (x)) 0
A 0 0


 ∆x

∆λ
∆ν

 = −rt(x , λ, ν).

At each iteration t increases by the reciprocal of the (surogate) duality gap
− 1

f (x)Tλ
.
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