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Models and Graphs Predictions in Random Graphs

Models and Data Sets
The overarching problem is the following:

Main Problem
Given a dynamical graph-based data set, discover if data can be explained
as a structured data graph, or just as a random graph.

To do so, we need to understand: (1) how to generate dynamical graphs;
(2) how to analyze these graphs.
Random graphs: two main classes, Gn,p and Γn,m.
Structured graphs: weighted graphs or percolation graphs → sequence of
nested graphs.
What to look for:

1 complete subgraphs (cliques)
2 connectivity (number and size of connected components)
3 spectral gap and optimal partitions (Cheeger constant)
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Sequence of Nested Graphs

We fix the number of vertices n. Sequence: (Gm)0≤m≤M of graphs
Gm = (V, Em), where each Gm has exactly n vertices, |V| = n, and m
edges, |Em| = m. Additionally we require Em ⊂ Em+1 (nestedness).

Examples: see movies
Quasi-Regular percolation graph :
PercGraph n100N10d2 sig0.100000 lp2.000000.mp4
Vertices are permuted randomly :
PercGraph scrambled n100N10d2 sig0.100000 lp2.000000.mp4
Edges are permuted randomly :
PercGraph random n100N10d2 sig0.100000 lp2.000000.mp4
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Random Graphs

The Erdöd-Rényi class Gn,p of random graphs: the number of vertices is
fixed to n, and each edge is selected independently with probability p. The
probability mass function, P(G) for a graph G with n vertices and m edges
is

P(G) = pm(1− p)n(n−1)/2−m ,
n(n − 1)

2 =
(

n
2

)
.

The class Γn,m is the set of all graphs with n vertices and exactly m edges.
In this class, the graph probability distribution is uniform:

P(G) = 1/
(

n(n − 1)/2
m

)
.
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The Erdöd-Rényi class Gn,p of random graphs: the number of vertices is
fixed to n, and each edge is selected independently with probability p. The
probability mass function, P(G) for a graph G with n vertices and m edges
is

P(G) = pm(1− p)n(n−1)/2−m ,
n(n − 1)

2 =
(

n
2

)
.

The class Γn,m is the set of all graphs with n vertices and exactly m edges.
In this class, the graph probability distribution is uniform:

P(G) = 1/
(

n(n − 1)/2
m

)
.

Radu Balan (UMD) Graphs 5 March 8, 2017



Models and Graphs Predictions in Random Graphs

Distribution of Cliques
Expected Values

Let Xq denote the number of q-cliques in a random graph G . Then the
expectation of Xq in Gn,p class is

E[Xq] =
(

n
q

)
pq(q−1)/2

The expectation of Xq in the class Γn,m is approximated by the above
formula for p = 2m

n(n−1) :

E[Xq] ≈
(

n
q

)( 2m
n(n − 1)

)q(q−1)/2
∼ θq

mq(q−1)/2

nq(q−2)

E[X3] ∼ θm3

n3 , E[X4] ∼ θm6

n8
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3-Cliques and 4-cliques
Thresholds

Theorem
Let m = m(n) be the number of edges in Γn,m.

1 If m� n (i.e. limn→∞
m
n =∞) then

limn→∞ Prob[G ∈ Γn,m has a 3− clique]→ 1.
2 If m� n (i.e. limn→∞

m
n = 0) then

limn→∞ Prob[G ∈ Γn,m has a 3− clique]→ 0.

Theorem
Let m = m(n) be the number of edges in Γn,m.

1 If m� n4/3 (i.e. limn→∞
m

n4/3 =∞) then
limn→∞ Prob[G ∈ Γn,m has a 4− clique]→ 1.

2 If m� n4/3 (i.e. limn→∞
m

n4/3 = 0) then
limn→∞ Prob[G ∈ Γn,m has a 4− clique]→ 0.
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q-Cliques
Thresholds

Theorem
Let p = p(n) be the edge probability in Gn,p. Let q ≥ 3 be and integer.

1 If p � 1
n2/(q−1) (i.e. limn→∞ n2/(q−1)p =∞) then

limn→∞ Prob[G ∈ Gn,p has a q − clique]→ 1.
2 If p � 1

n2/(q−1) (i.e. limn→∞ n2/(q−1)p = 0) then
limn→∞ Prob[G ∈ Gn,p has a q − clique]→ 0.

Theorem
Let m = m(n) be the number of edges in Γn,m. Let q ≥ 3 be and integer.

1 If m� n2(q−2)/(q−1) (i.e. limn→∞
m

n2(q−2)/(q−1) =∞) then
limn→∞ Prob[G ∈ Γn,m has a q − clique]→ 1.

2 If m� n2(q−2)/(q−1) (i.e. limn→∞
m

n2(q−1)/(q−1) = 0) then
limn→∞ Prob[G ∈ Γn,m has a q − clique]→ 0.
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3-Cliques and 4-Cliques
Behavior at the threshold

In general we obtain a ”coarse threshold”. Recall a Poisson process X with
parameter λ has p.m.f. Prob[X = k] = e−λ λk

k! .

Theorem
In Gn,p,

1 For p = c
n , X3 is asymptotically Poisson with parameter λ = c3/6.

2 For p = c
n2/3 , X4 is asymptotically Poisson with parameter λ = c6/24.

Theorem
In Γn,m,

1 For m = cn, X3 is asymptotically Poisson with parameter λ = 4c3/3.
2 For m = cn4/3, X4 is asymptotically Poisson with parameter
λ = 8c6/3.
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Numerical Results
3-cliques for random graph with n = 1000 vertices
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Connectivity
Strong threshold

Theorem
1 Let m = m(n) satisfies m� 1

2 n log(n). Then

lim
n→∞

Prob[G ∈ Γn,m is connected ] = 0

2 Let m = m(n) satisfies m� 1
2 n log(n). Then

lim
n→∞

Prob[G ∈ Γn,m is connected ] = 1

3 Assume m = 1
2 n log(n) + tn + o(n), where o(n)� n. Then

lim
n→∞

Prob[G ∈ Γn,m is connected ] = e−e−2t

In this case 1
2 n log(n) is known as a strong threshold.
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Numerical Results
Connectivity for random graph with n = 1000 vertices
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Graph Laplacians
∆, L, ∆̃

Recall the Laplacian matrices:

∆ = D − A , ∆ij =


di if i = j
−1 if (i , j) ∈ E
0 otherwise

L = D−1∆ , Li ,j =


1 if i = j and di > 0
− 1

d(i) if (i , j) ∈ E
0 otherwise

∆̃ = D−1/2∆D−1/2 , ∆̃i ,j =


1 if i = j and di > 0

− 1√
d(i)d(j)

if (i , j) ∈ E
0 otherwise

Remark: D−1,D−1/2 are the pseudoinverses.
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Eigenvalues of Laplacians
∆, L, ∆̃

What do we know about the set of eigenvalues of these matrices for a
graph G with n vertices?

1 ∆ = ∆T ≥ 0 and hence its eigenvalues are non-negative real
numbers.

2 eigs(∆̃) = eigs(L) ⊂ [0, 2].
3 0 is always an eigenvalue and its multiplicity equals the number of

connected components of G ,
dim ker(∆) = dim ker(L) = dim ker(∆̃) = #connected components.

Let 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 be the eigenvalues of ∆̃. Denote
λ(G) = max

1≤i≤n−1
|1− λi |.

Note
∑n−1

i=1 λi = trace(∆̃) = n. Hence the average eigenvalue is about 1.
λ(G) is called the absolute gap and measures the spread of eigenvalues
away from 1.
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The spectral absolute gap
λ(G)

The main result in [8]) says that for connected graphs w/h.p.:

λ1 ≥ 1− C√
Average Degree

= 1− C√
p(n − 1)

= 1− C
√ n

2m .

Theorem (For class Gn,p)
Fix δ > 0 and let p > ( 1

2 + δ)log(n)/n. Let d = p(n − 1) denote the
expected degree of a vertex. Let G̃ be the giant component of the
Erdös-Rényi graph. For every fixed ε > 0, there is a constant C = C(δ, ε),
so that

λ(G̃) ≤ C√
d

with probability at least 1− Cn exp(−(2− ε)d)− C exp(−d1/4log(n)).

Connectivity threshold: p ∼ log(n)
n .
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λ1 ≥ 1− C√
Average Degree

= 1− C√
p(n − 1)

= 1− C
√ n

2m .

Theorem (For class Γn,m)
Fix δ > 0 and let m > 1

2 ( 1
2 + δ)n log(n). Let d = 2m

n denote the expected
degree of a vertex. Let G̃ be the giant component of the Erdös-Rényi
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Numerical Results
λ1 for random graphs

Results for n = 100 vertices: λ1(G̃) ≈ 1− C√
m .
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Numerical Results
log(1 − λ1) vs. log(m) for random graphs

Results for n = 100 vertices: λ1(G̃) ≈ 1− C√
m .
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The Cheeger constant
hG and Optimal Partitions

Fix a graph G = (V, E) with n vertices and m edges. The Cheeger
constant hG is the optimum value of

hG = min
S⊂V

|E (S, S̄)|
min(vol(S), vol(S̄))

where
1 For two disjoint sets of vertices A abd B, E (A,B) denotes the set of

edges that connect vertices in A with vertices in B:

E (A,B) = {(x , y) ∈ E , x ∈ A , y ∈ B}.
2 The volume of a set of vertices is the sum of its degrees:

vol(A) =
∑
x∈A

dx .

3 For a set of vertices A, denote Ā = V \ A its complement.
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The Cheeger inequalities
hG and λ1

Theorem
For a connected graph

2hG ≥ λ1 > 1−
√

1− h2
G >

h2
G
2 .

Equivalently: √
2λ1 >

√
1− (1− λ1)2 > hG ≥

λ1
2 .

Proof of upper bound reveals a ”good” initial guess of the optimal partition:
1 Compute eigenpair (λ1, g1) for the second smallest eigenvalue;
2 Form the partition:

S = {k ∈ V , g1
k ≥ 0} , S̄ = {k ∈ V , g1

k < 0}
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Min-cut Problems
Weighted Graphs

The Cheeger inequality holds true for weighted graphs, G = (V, E ,W ).
∆ = D −W , D = diag(wi )1≤i≤n, wi =

∑
j 6=i wi ,j

∆̃ = D−1/2∆D−1/2 = I − D−1/2WD−1/2

eigs(∆̃) ⊂ [0, 2]

hG = minS

∑
x∈S,y∈S̄ Wx,y

min(
∑

x∈S Wx,x ,
∑

y∈S̄ Wy,y )

2hG ≥ λ1 ≥ 1−
√

1− h2
G

Good initial guess for optimal partition: Compute the eigenpair
(λ1, g1) associated to the second smallest eigenvalue of ∆̃; set:

S = {k ∈ V , g1
k ≥ 0} , S̄ = {k ∈ V , g1

k < 0}
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