Lecture 5: The Cheeger Constant and the Spectral Gap

Radu Balan

Department of Mathematics, AMSC, CSCAMM and NWC
University of Maryland, College Park, MD

March 2, 2017

Eigenvalues of Laplacians

$\Delta, L, \tilde{\Delta}$
Today we discuss the spectral theory of graphs. Recall the Laplacian matrices:

$$
\begin{gathered}
\Delta=D-A, \Delta_{i j}=\left\{\begin{array}{ccc}
d_{i} & \text { if } & i=j \\
-1 & \text { if } & (i, j) \in \mathcal{E} \\
0 & \text { otherwise }
\end{array}\right. \\
L=D^{-1} \Delta, \quad L_{i, j}=\left\{\begin{array}{cll}
1 & \text { if } & i=j \text { and } d_{i}>0 \\
-\frac{1}{d(i)} & \text { if } & (i, j) \in \mathcal{E} \\
0 & \text { otherwise }
\end{array}\right. \\
\tilde{\Delta}=D^{-1 / 2} \Delta D^{-1 / 2}, \quad \tilde{\Delta}_{i, j}=\left\{\begin{array}{ccc}
1 & \text { if } & i=j \text { and } d_{i}>0 \\
-\frac{1}{\sqrt{d(i) d(j)}} & \text { if } & (i, j) \in \mathcal{E} \\
0 & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Eigenvalues of Laplacians

$\Delta, L, \tilde{\Delta}$
Today we discuss the spectral theory of graphs. Recall the Laplacian matrices:

$$
\begin{gathered}
\Delta=D-A, \quad \Delta_{i j}=\left\{\begin{array}{ccc}
d_{i} & \text { if } & i=j \\
-1 & \text { if } & (i, j) \in \mathcal{E} \\
0 & \text { otherwise }
\end{array}\right. \\
L=D^{-1} \Delta, \quad L_{i, j}=\left\{\begin{array}{cll}
1 & \text { if } & i=j \text { and } d_{i}>0 \\
-\frac{1}{d(i)} & \text { if } & (i, j) \in \mathcal{E} \\
0 & \text { otherwise }
\end{array}\right. \\
\tilde{\Delta}=D^{-1 / 2} \Delta D^{-1 / 2}, \quad \tilde{\Delta}_{i, j}=\left\{\begin{array}{ccc}
1 & \text { if } & i=j \text { and } d_{i}>0 \\
-\frac{1}{\sqrt{d(i) d(j)}} & \text { if } & (i, j) \in \mathcal{E} \\
0 & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Remark: $D^{-1}, D^{-1 / 2}$ are the pseudoinverses.

Eigenvalues of Laplacians
 $\Delta, L, \tilde{\Delta}$

What do we know about the set of eigenvalues of these matrices for a graph G with n vertices?
(1) $\Delta=\Delta^{T} \geq 0$ and hence its eigenvalues are non-negative real numbers.
(2) $\operatorname{eigs}(\tilde{\Delta})=\operatorname{eigs}(L) \subset[0,2]$.
(3) 0 is always an eigenvalue and its multiplicity equals the number of connected components of G,

$$
\operatorname{dim} \operatorname{ker}(\Delta)=\operatorname{dim} \operatorname{ker}(L)=\operatorname{dim} \operatorname{ker}(\tilde{\Delta})=\# \text { connected components. }
$$

Eigenvalues of Laplacians
 $\Delta, L, \bar{\Delta}$

What do we know about the set of eigenvalues of these matrices for a graph G with n vertices?
(1) $\Delta=\Delta^{T} \geq 0$ and hence its eigenvalues are non-negative real numbers.
(3) $\operatorname{eigs}(\tilde{\Delta})=\operatorname{eigs}(L) \subset[0,2]$.
(0) 0 is always an eigenvalue and its multiplicity equals the number of connected components of G,
$\operatorname{dim} \operatorname{ker}(\Delta)=\operatorname{dim} \operatorname{ker}(L)=\operatorname{dim} \operatorname{ker}(\tilde{\Delta})=\#$ connected components.
Let $0=\lambda_{0} \leq \lambda_{1} \leq \cdots \leq \lambda_{n-1}$ be the eigenvalues of $\tilde{\Delta}$. Denote

$$
\lambda(G)=\max _{1 \leq i \leq n-1}\left|1-\lambda_{i}\right| .
$$

Note $\sum_{i=1}^{n-1} \lambda_{i}=\operatorname{trace}(\tilde{\Delta})=n$. Hence the average eigenvalue is about 1 . $\lambda(G)$ is called the absolute gap and measures the spread of eigenvalues awav from 1

The spectral absolute gap $\lambda(G)$

The main result in [8]) says that for connected graphs w/h.p.:

$$
\lambda_{1} \geq 1-\frac{C}{\sqrt{\text { Average Degree }}}=1-\frac{C}{\sqrt{p(n-1)}}=1-C \sqrt{\frac{n}{2 m}} .
$$

Theorem (For class $\mathcal{G}_{n, p}$)

Fix $\delta>0$ and let $p>\left(\frac{1}{2}+\delta\right) \log (n) / n$. Let $d=p(n-1)$ denote the expected degree of a vertex. Let \tilde{G} be the giant component of the Erdös-Rényi graph. For every fixed $\varepsilon>0$, there is a constant $C=C(\delta, \varepsilon)$, so that

$$
\lambda(\tilde{G}) \leq \frac{C}{\sqrt{d}}
$$

with probability at least $1-C n \exp (-(2-\varepsilon) d)-C \exp \left(-d^{1 / 4} \log (n)\right)$.
Connectivity threshold: $p \sim \frac{\log (n)}{n}$.

The spectral absolute gap $\lambda(G)$

The main result in [8] says that for connected graphs w/h.p.:

$$
\lambda_{1} \geq 1-\frac{C}{\sqrt{\text { Average Degree }}}=1-\frac{C}{\sqrt{p(n-1)}}=1-C \sqrt{\frac{n}{2 m}} .
$$

Theorem (For class $\Gamma^{n, m}$)

Fix $\delta>0$ and let $m>\frac{1}{2}\left(\frac{1}{2}+\delta\right) n \log (n)$. Let $d=\frac{2 m}{n}$ denote the expected degree of a vertex. Let \tilde{G} be the giant component of the Erdös-Rényi graph. For every fixed $\varepsilon>0$, there is a constant $C=C(\delta, \varepsilon)$, so that

$$
\lambda(\tilde{G}) \leq \frac{C}{\sqrt{d}}
$$

with probability at least $1-C n \exp (-(2-\varepsilon) d)-C \exp \left(-d^{1 / 4} \log (n)\right)$.
Connectivity threshold: $m \sim \frac{1}{2} n \log (n)$.

Numerical Results

λ_{1} for random graphs
Results for $n=100$ vertices: $\lambda_{1}(\tilde{G}) \approx 1-\frac{C}{\sqrt{m}}$.

Numerical Results

$1-\lambda_{1}$ for random graphs
Results for $n=100$ vertices: $\lambda_{1}(\tilde{G}) \approx 1-\frac{C}{\sqrt{m}}$.

Numerical Results

$1-\lambda_{1}$ for random graphs
Results for $n=100$ vertices: $\lambda_{1}(\tilde{G}) \approx 1-\frac{C}{\sqrt{m}}$.

Numerical Results

$\log \left(1-\lambda_{1}\right)$ vs. $\log (m)$ for random graphs
Results for $n=100$ vertices: $\lambda_{1}(\tilde{G}) \approx 1-\frac{C}{\sqrt{m}}$.

The spectral absolute gap
 Proof

How to obtain such estimates? Following [4]: First note: $\lambda_{i}=1-\lambda_{i}\left(D^{-1 / 2} A D^{-1 / 2}\right)$. Thus

$$
\lambda(G)=\max _{1 \leq i \leq n-1}\left|1-\lambda_{i}\right|=\left\|D^{-1 / 2} A D^{-1 / 2}\right\|=\sqrt{\lambda_{\max }\left(\left(D^{-1 / 2} A D^{-1 / 2}\right)^{2}\right)}
$$

Ideas:
(1) For $X=D^{-1 / 2} A D^{-1 / 2}$, and any positive integer $k>0$,

$$
\lambda_{\max }\left(X^{2}\right)=\left(\lambda_{\max }\left(X^{2 k}\right)\right)^{1 / k} \leq\left(\operatorname{trace}\left(X^{2 k}\right)\right)^{1 / k}
$$

(2) (Markov's inequality)

$$
\operatorname{Prob}\{\lambda(G)>t\}=\operatorname{Prob}\left\{\lambda(G)^{2 k}>t^{2 k}\right\} \leq \frac{1}{t^{2 k}} \mathbb{E}\left[\operatorname{trace}\left(X^{2 k}\right)\right]
$$

The spectral absolute gap
 Proof (2)

Consider the easier case when $D=d l$ (all vertices have the same degree):

$$
\mathbb{E}\left[\left(X^{2 k}\right)\right]=\frac{1}{d^{2 k}} \mathbb{E}\left[\operatorname{trace}\left(A^{2 k}\right)\right]
$$

The expectation turns into numbers of $2 k$-cycles and loops. Combinatorial kicks in ...

The spectral absolute gap
 Proof (2)

Consider the easier case when $D=d l$ (all vertices have the same degree):

$$
\mathbb{E}\left[\left(X^{2 k}\right)\right]=\frac{1}{d^{2 k}} \mathbb{E}\left[\operatorname{trace}\left(A^{2 k}\right)\right]
$$

The expectation turns into numbers of $2 k$-cycles and loops. Combinatorial kicks in ...

Remark

An additional "ingredient" sometimes: Bernstein's "trick" for $X \geq 0$,

$$
\begin{aligned}
\operatorname{Prob}\{X \leq t\} & =\operatorname{Prob}\left\{e^{-s X} \geq e^{-s t}\right\} \leq \min _{s \geq 0} \frac{\mathbb{E}\left[e^{-s X}\right]}{e^{-s t}} \\
& =\min _{s \geq 0} e^{s t} \int_{0}^{\infty} e^{-s x} p_{X}(x) d x
\end{aligned}
$$

The spectral absolute gap
 Proof (2)

Consider the easier case when $D=d l$ (all vertices have the same degree):

$$
\mathbb{E}\left[\left(X^{2 k}\right)\right]=\frac{1}{d^{2 k}} \mathbb{E}\left[\operatorname{trace}\left(A^{2 k}\right)\right]
$$

The expectation turns into numbers of $2 k$-cycles and loops. Combinatorial kicks in ...

Remark

An additional "ingredient" sometimes: Bernstein's "trick" for $X \geq 0$,

$$
\begin{aligned}
\operatorname{Prob}\{X \leq t\} & =\operatorname{Prob}\left\{e^{-s X} \geq e^{-s t}\right\} \leq \min _{s \geq 0} \frac{\mathbb{E}\left[e^{-s X}\right]}{e^{-s t}} \\
& =\min _{s \geq 0} e^{s t} \int_{0}^{\infty} e^{-s x} p_{X}(x) d x
\end{aligned}
$$

(the "Laplace" method). It gives exponential decay instead of $\frac{1}{t}$ or $\frac{1}{t^{2}}$.

The Cheeger constant

Partitions

Fix a graph $G=(\mathcal{V}, \mathcal{E})$ with n vertices and m edges. We try to find an optimal partition $\mathcal{V}=A \cup B$ that minimizes a certain quantity. Here are the concepts:
(1) For two disjoint sets of vertices A abd $B, E(A, B)$ denotes the set of edges that connect vertices in A with vertices in B :

$$
E(A, B)=\{(x, y) \in \mathcal{E} \quad, \quad x \in A, y \in B\}
$$

(2) The volume of a set of vertices is the sum of its degrees:

$$
\operatorname{vol}(A)=\sum_{x \in A} d_{x}
$$

(3) For a set of vertices A, denote $\bar{A}=\mathcal{V} \backslash A$ its complement.

The Cheeger constant h_{G}

The Cheeger constant h_{G} is defined as

$$
h_{G}=\min _{S \subset \mathcal{V}} \frac{|E(S, \bar{S})|}{\min (\operatorname{vol}(S), \operatorname{vol}(\bar{S}))}
$$

Remark

It is a min edge-cut problem: This means, find the minimum number of edges that need to be cut so that the graph becomes disconnected, while the two connected components are not too small.
There is a similar min vertex-cut problem, where $E(S, \bar{S})$ is replaced by $\delta(S)$, the set of boundary points of S (the constant is denoted by g_{G}).

Remark

The graph is connected iff $h_{G}>0$.

The Cheeger inequalities

 h_{G} and λ_{1}See [2](ch.2):
Theorem
For a connected graph

$$
2 h_{G} \geq \lambda_{1}>1-\sqrt{1-h_{G}^{2}}>\frac{h_{G}^{2}}{2} .
$$

Equivalently:

$$
\sqrt{2 \lambda_{1}}>\sqrt{1-\left(1-\lambda_{1}\right)^{2}}>h_{G} \geq \frac{\lambda_{1}}{2} .
$$

Why is it interesting: finding the exact h_{G} is a NP-hard problem.

The Cheeger inequalities

Proof of upper bound

Why the upper bound: $2 h_{G} \geq \lambda_{1}$?
All starts from understanding what λ_{1} is:

$$
\Delta 1=0 \rightarrow \tilde{\Delta} D^{1 / 2} 1=0
$$

Hence the eigenvector associated to $\lambda_{0}=0$ is

$$
g^{0}=\left(\sqrt{d_{1}}, \sqrt{d_{2}}, \cdots, \sqrt{d_{n}}\right)^{T} .
$$

The eigenpair $\left(\lambda_{1}, g^{1}\right)$ is given by a solution of the following optimization problem:

$$
\lambda_{1}=\min _{h \perp g^{0}} \frac{\langle\tilde{\Delta} h, h\rangle}{\langle h, h\rangle}
$$

In particular any h so that $\left\langle h, g^{0}\right\rangle=\sum_{k=1}^{n} h_{k} \sqrt{d_{k}}=0$ satisfies

$$
\langle\tilde{\Delta} h, h\rangle \geq \lambda_{1}\|h\|^{2} .
$$

The Cheeger inequalities
 Proof of upper bound (2)

Assume that we found the optimal partition $(A=S, B=\bar{S})$ of \mathcal{V} that minimizes the edge-cut.
Define the following particular n-vector:

$$
h_{k}=\left\{\begin{array}{rll}
\frac{\sqrt{d_{k}}}{\operatorname{vol}(A)} & \text { if } & k \in A=S \\
-\frac{\sqrt{d_{k}}}{\operatorname{vol}(B)} & \text { if } & k \in B=\mathcal{V} \backslash S
\end{array}\right.
$$

One checks that $\sum_{k=1}^{n} h_{k} \sqrt{d_{k}}=1-1=0$, and $\|h\|^{2}=\frac{1}{\operatorname{vol}(A)}+\frac{1}{\operatorname{vol}(B)}$. But:

$$
\langle\tilde{\Delta} h, h\rangle=\sum_{(i, j): A_{i, j}=1}\left(\frac{h_{i}}{\sqrt{d_{i}}}-\frac{h_{j}}{\sqrt{d_{j}}}\right)^{2}=|E(A, B)|\left(\frac{1}{\operatorname{vol}(A)}+\frac{1}{v o l(B)}\right)^{2} .
$$

Thus:

$$
2 h_{G}=\frac{2|E(A, B)|}{\min (\operatorname{vol}(A), \operatorname{vol}(B))} \geq|E(A, B)|\left(\frac{1}{\operatorname{vol}(A)}+\frac{1}{\operatorname{vol}(B)}\right) \geq \lambda_{1}
$$

Min-cut Problems

Initialization

The proof of the upper bound in Cheeger inequality reveals a "good" initial guess of the optimal partition:
(1) Compute the eigenpair $\left(\lambda_{1}, g^{1}\right)$ associated to the second smallest eigenvalue;
(2) Form the partition:

$$
S=\left\{k \in \mathcal{V}, \quad g_{k}^{1} \geq 0\right\}, \quad \bar{S}=\left\{k \in \mathcal{V}, \quad g_{k}^{1}<0\right\}
$$

Min-cut Problems

Weighted Graphs

The Cheeger inequality holds true for weighted graphs, $G=(\mathcal{V}, \mathcal{E}, W)$.

- $\Delta=D-W, D=\operatorname{diag}\left(w_{i}\right)_{1 \leq i \leq n}, w_{i}=\sum_{j \neq i} w_{i, j}$
- $\tilde{\Delta}=D^{-1 / 2} \Delta D^{-1 / 2}=I-D^{-1 / 2} W D^{-1 / 2}$
- $\operatorname{eigs}(\tilde{\Delta}) \subset[0,2]$
- $h_{G}=\min _{S} \frac{\sum_{x \in S, y \in \bar{S}} W_{x, y}}{\min \left(\sum_{x \in S} W_{x, x,} \sum_{y \in \bar{S}} W_{y, y}\right)}$
- $2 h_{G} \geq \lambda_{1} \geq 1-\sqrt{1-h_{G}^{2}}$
- Good initial guess for optimal partition: Compute the eigenpair $\left(\lambda_{1}, g^{1}\right)$ associated to the second smallest eigenvalue of $\tilde{\Delta}$; set:

$$
S=\left\{k \in \mathcal{V}, \quad g_{k}^{1} \geq 0\right\}, \quad \bar{S}=\left\{k \in \mathcal{V}, \quad g_{k}^{1}<0\right\}
$$

References

圊 B．Bollobás，Graph Theory．An Introductory Course， Springer－Verlag 1979．99（25），15879－15882（2002）．

目 F．Chung，Spectral Graph Theory，AMS 1997.
F．Chung，L．Lu，The average distances in random graphs with given expected degrees，Proc．Nat．Acad．Sci． 2002.

國 F．Chung，L．Lu，V．Vu，The spectra of random graphs with Given Expected Degrees，Internet Math．1（3），257－275（2004）．

R R Diestel，Graph Theory，3rd Edition，Springer－Verlag 2005.
目 P．Erdös，A．Rényi，On The Evolution of Random Graphs
－G．Grimmett，Probability on Graphs．Random Processes on Graphs and Lattices，Cambridge Press 2010.

眉 C. Hoffman, M. Kahle, E. Paquette, Spectral Gap of Random Graphs and Applications to Random Topology, arXiv: 1201.0425 [math.CO] 17 Sept. 2014.

圊 J. Leskovec, J. Kleinberg, C. Faloutsos, Graph Evolution: Densification and Shrinking Diameters, ACM Trans. on Knowl.Disc.Data, 1(1) 2007.

