Analytical Results

Distributions

Today we discuss about phase transition in random graphs. Recall on the Erdös-Rényi class $G_{n,p}$ of random graphs, the probability mass function on G, $P : G \rightarrow [0, 1]$, is obtained by assuming that, as random variables, edges are independent from one another, and each edge occurs with probability $p \in [0, 1]$. Thus a graph $G \in G$ with m vertices will have probability $P(G)$ given by

$$P(G) = p^m(1 - p)^\binom{n}{2}^{m}.$$
Today we discuss about phase transition in random graphs. Recall on the Erdös-Rényi class $G_{n,p}$ of random graphs, the probability mass function on G, $P : G \rightarrow [0, 1]$, is obtained by assuming that, as random variables, edges are independent from one another, and each edge occurs with probability $p \in [0, 1]$. Thus a graph $G \in G$ with m vertices will have probability $P(G)$ given by

$$P(G) = p^m(1 - p)^{\binom{n}{2} - m}.$$

Recall the expected number of q-cliques X_q is

$$\mathbb{E}[X_q] = \binom{n}{q} p^{q(q-1)/2}.$$
Analytical Results
Distributions

We shall also use gnm the set of all graphs on n vertices with m edges. The set $\Gamma^{n,m}$ has cardinal

$$\binom{n}{2} \cdot \binom{m}{m}.$$

In $\Gamma^{n,m}$ each graph is equally probable.
Analytical Results

Cliques

The case of 3-cliques: \(\mathbb{E}[X_3] = \theta n^3 p^3 \) (\(\theta \sim \frac{1}{6} \)).

The case of 4-cliques: \(\mathbb{E}[X_4] = \theta n^4 p^6 \) (\(\theta \sim \frac{1}{24} \)).

The first problem we consider is the size of the largest clique of a random graph.

Note, finding the size of the largest clique (called \textit{the clique number}) is a NP-hard problem.
The case of 3-cliques: \(\mathbb{E}[X_3] = \theta n^3 p^3 \) (\(\theta \sim \frac{1}{6} \)).

The case of 4-cliques: \(\mathbb{E}[X_4] = \theta n^4 p^6 \) (\(\theta \sim \frac{1}{24} \)).

The first problem we consider is the size of the largest clique of a random graph. Note, finding the size of the largest clique (called the clique number) is a NP-hard problem.

Idea: Analyze \(p \) so that \(\mathbb{E}[X_q] \approx 1 \).

- For \(p > \frac{1}{n} \) and large \(n \) we expect that graphs will have a 3-clique;
- For \(p > \frac{1}{n^{2/3}} \) and large \(n \), we expect that graphs will have a 4-clique;
Analytical Results

Clique

The case of 3-cliques: \(\mathbb{E}[X_3] = \theta n^3 p^3 (\theta \sim \frac{1}{6}) \).
The case of 4-cliques: \(\mathbb{E}[X_4] = \theta n^4 p^6 (\theta \sim \frac{1}{24}) \).

The first problem we consider is the size of the largest clique of a random graph.

Note, finding the size of the largest clique (called the clique number) is a NP-hard problem.

Idea: Analyze \(p \) so that \(\mathbb{E}[X_q] \approx 1 \).

- For \(p > \frac{1}{n} \) and large \(n \) we expect that graphs will have a 3-clique;
- For \(p > \frac{1}{n^{2/3}} \) and large \(n \), we expect that graphs will have a 4-clique;

Question: How sharp are these thresholds?
Theorem

Let \(p = p(n) \) be the edge probability in \(G_{n,p} \).

1. If \(p \gg \frac{1}{n} \) (i.e. \(\lim_{n \to \infty} np = \infty \)) then
 \[\lim_{n \to \infty} \text{Prob}[G \in G_{n,p} \text{ has a 3-clique}] \to 1. \]

2. If \(p \ll \frac{1}{n} \) (i.e. \(\lim_{n \to \infty} np = 0 \)) then
 \[\lim_{n \to \infty} \text{Prob}[G \in G_{n,p} \text{ has a 3-clique}] \to 0. \]
Analytical Results

3-Cliques

Theorem

Let \(p = p(n) \) be the edge probability in \(G_{n,p} \).

1. If \(p \gg \frac{1}{n} \) (i.e. \(\lim_{n \to \infty} np = \infty \)) then
 \[
 \lim_{n \to \infty} \text{Prob}[G \in G_{n,p} \text{ has a } 3\text{-clique}] \to 1.
 \]

2. If \(p \ll \frac{1}{n} \) (i.e. \(\lim_{n \to \infty} np = 0 \)) then
 \[
 \lim_{n \to \infty} \text{Prob}[G \in G_{n,p} \text{ has a } 3\text{-clique}] \to 0.
 \]

Theorem

Let \(m = m(n) \) be the number of edges in \(\Gamma^{n,m} \).

1. If \(m \gg n \) (i.e. \(\lim_{n \to \infty} \frac{m}{n} = \infty \)) then
 \[
 \lim_{n \to \infty} \text{Prob}[G \in \Gamma^{n,m} \text{ has a } 3\text{-clique}] \to 1.
 \]

2. If \(m \ll n \) (i.e. \(\lim_{n \to \infty} \frac{m}{n} = 0 \)) then
 \[
 \lim_{n \to \infty} \text{Prob}[G \in \Gamma^{n,m} \text{ has a } 3\text{-clique}] \to 0.
 \]
Analytical Results

4-Cliques

Theorem

Let $p = p(n)$ be the edge probability in $G_{n,p}$.

1. If $p \gg \frac{1}{n^{2/3}}$ (i.e. $\lim_{n \to \infty} n^{2/3} p = \infty$) then
 $\lim_{n \to \infty} \text{Prob}[G \in G_{n,p} \text{ has a } 4-\text{clique}] \to 1$.

2. If $p \ll \frac{1}{n^{2/3}}$ (i.e. $\lim_{n \to \infty} n^{2/3} p = 0$) then
 $\lim_{n \to \infty} \text{Prob}[G \in G_{n,p} \text{ has a } 4-\text{clique}] \to 0$.

Radu Balan ()

Graphs 1
Analytical Results

4-Cliques

Theorem

Let \(p = p(n) \) be the edge probability in \(G_{n,p} \).

1. If \(p \gg \frac{1}{n^{2/3}} \) (i.e. \(\lim_{n \to \infty} n^{2/3} p = \infty \)) then
 \[\lim_{n \to \infty} \text{Prob}[G \in G_{n,p} \text{ has a } 4-\text{clique}] \to 1. \]

2. If \(p \ll \frac{1}{n^{2/3}} \) (i.e. \(\lim_{n \to \infty} n^{2/3} p = 0 \)) then
 \[\lim_{n \to \infty} \text{Prob}[G \in G_{n,p} \text{ has a } 4-\text{clique}] \to 0. \]

Theorem

Let \(m = m(n) \) be the number of edges in \(\Gamma_{n,m} \).

1. If \(m \gg n^{4/3} \) (i.e. \(\lim_{n \to \infty} \frac{m}{n^{4/3}} = \infty \)) then
 \[\lim_{n \to \infty} \text{Prob}[G \in \Gamma_{n,m} \text{ has a } 4-\text{clique}] \to 1. \]

2. If \(m \ll n^{4/3} \) (i.e. \(\lim_{n \to \infty} \frac{m}{n^{4/3}} = 0 \)) then
 \[\lim_{n \to \infty} \text{Prob}[G \in \Gamma_{n,m} \text{ has a } 4-\text{clique}] \to 0. \]
Analytical Results

q-Cliques

Theorem

Let $p = p(n)$ be the edge probability in $G_{n,p}$. Let $q \geq 3$ be an integer.

1. If $p \gg \frac{1}{n^2/(q-1)}$ (i.e. $\lim_{n \to \infty} n^2/(q-1) p = \infty$) then
 $$\lim_{n \to \infty} \Pr[G \in G_{n,p} \text{ has a } q - \text{clique}] \to 1.$$

2. If $p \ll \frac{1}{n^2/(q-1)}$ (i.e. $\lim_{n \to \infty} n^2/(q-1) p = 0$) then
 $$\lim_{n \to \infty} \Pr[G \in G_{n,p} \text{ has a } q - \text{clique}] \to 0.$$
Analytical Results

q-Cliques

Theorem

Let $p = p(n)$ be the edge probability in $G_{n,p}$. Let $q \geq 3$ be an integer.

1. If $p \gg \frac{1}{n^{2/(q-1)}}$ (i.e. $\lim_{n \to \infty} n^{2/(q-1)} p = \infty$) then
 \[\lim_{n \to \infty} \text{Prob}[G \in G_{n,p} \text{ has a } q \text{-clique}] \to 1. \]

2. If $p \ll \frac{1}{n^{2/(q-1)}}$ (i.e. $\lim_{n \to \infty} n^{2/(q-1)} p = 0$) then
 \[\lim_{n \to \infty} \text{Prob}[G \in G_{n,p} \text{ has a } q \text{-clique}] \to 0. \]

Theorem

Let $m = m(n)$ be the number of edges in $\Gamma^{n,m}$. Let $q \geq 3$ be an integer.

1. If $m \gg n^{2(q-2)/(q-1)}$ (i.e. $\lim_{n \to \infty} \frac{m}{n^{2(q-2)/(q-1)}} = \infty$) then
 \[\lim_{n \to \infty} \text{Prob}[G \in \Gamma^{n,m} \text{ has a } q \text{-clique}] \to 1. \]

2. If $m \ll n^{2(q-2)/(q-1)}$ (i.e. $\lim_{n \to \infty} \frac{m}{n^{2(q-1)/(q-1)}} = 0$) then
 \[\lim_{n \to \infty} \text{Prob}[G \in \Gamma^{n,m} \text{ has a } q \text{-clique}] \to 0. \]
Analytical Results

Markov and Chebyshev Inequalities

We want to control probabilities of the random event $X_3(G) > 0$. Two important tools:

1. **(Markov’s Inequality)** Assume X is a non-negative random variable. Then $\text{Prob}[X \geq t] \leq \frac{\mathbb{E}[X]}{t}$.

2. **(Chebyshev’s Inequality)** For any random variable X, $\text{Prob}[|X - \mathbb{E}[X]| \geq t] \leq \frac{\text{Var}[X]}{t^2}$.

where $\mathbb{E}[X]$ is the mean of X, and $\text{Var}[X] = \mathbb{E}[X^2] - |\mathbb{E}[X]|^2$ is the variance of X.
Analytical Results
Markov and Chebyshev Inequalities

We want to control probabilities of the random event $X_3(G) > 0$. Two important tools:

1. **(Markov’s Inequality)** Assume X is a non-negative random variable. Then $\text{Prob}[X \geq t] \leq \frac{\mathbb{E}[X]}{t}$.

2. **(Chebyshev’s Inequality)** For any random variable X, $\text{Prob}[|X - \mathbb{E}[X]| \geq t] \leq \frac{\text{Var}[X]}{t^2}$.

where $\mathbb{E}[X]$ is the mean of X, and $\text{Var}[X] = \mathbb{E}[X^2] - |\mathbb{E}[X]|^2$ is the variance of X. **Quick Proof:**

$$\text{Prob}[X \geq t] = \int_t^\infty p_X(x)dx \leq \frac{1}{t} \int_t^\infty xp_X(x)dx \leq \frac{\mathbb{E}[X]}{t}.$$

$$\text{Prob}[|X - \mathbb{E}[X]| \geq t] = P[|X - \mathbb{E}[X]|^2 \geq t^2] \leq \frac{\mathbb{E}[|X - \mathbb{E}[X]|^2]}{t^2} = \frac{\text{Var}[X]}{t^2}.$$
Analytical Results
Proofs for the 3-clique case

For small probability: We shall use Markov’s inequality to show $\text{Prob}[X_3 > 0] \to 0$ when $p \ll \frac{1}{n}$:

$\text{Prob}[X_3 > 0] = \text{Prob}[X_3 \geq 1] \leq \frac{\text{E}[X_3]}{1} = \frac{n(n-1)(n-2)}{6} p^3 = \theta n^3 p^3 \to 0.$
Analytical Results

Proofs for the 3-clique case

For small probability: We shall use Markov’s inequality to show
\[\text{Prob}[X_3 > 0] \to 0 \text{ when } p \ll \frac{1}{n}: \]

\[\text{Prob}[X_3 > 0] = \text{Prob}[X_3 \geq 1] \leq \frac{E[X_3]}{1} = \frac{n(n-1)(n-2)}{6} p^3 = \theta n^3 p^3 \to 0. \]

For large probability: Since \(E[X_3] \to \infty \) it follows that \(\text{Prob}[X_3 > 0] > 0. \)
We need to show that \(\text{Prob}[X_3 = 0] \to 0. \) By Chebyshev’s inequality:

\[\text{Prob}[X_3 = 0] \leq \text{Prob}[|X_3 - E[X_3]| \geq E[X_3]] \leq \frac{\text{Var}[X_3]}{|E[X_3]|^2} \]
Analytical Results
Proofs for the 3-clique case

For small probability: We shall use Markov’s inequality to show

$$\text{Prob}[X_3 > 0] \rightarrow 0 \text{ when } p \ll \frac{1}{n}:$$

$$\text{Prob}[X_3 > 0] = \text{Prob}[X_3 \geq 1] \leq \frac{E[X_3]}{1} = \frac{n(n-1)(n-2)}{6} p^3 = \theta n^3 p^3 \rightarrow 0.$$

For large probability: Since $E[X_3] \rightarrow \infty$ it follows that $\text{Prob}[X_3 > 0] > 0$. We need to show that $\text{Prob}[X_3 = 0] \rightarrow 0$. By Chebyshev’s inequality:

$$\text{Prob}[X_3 = 0] \leq \text{Prob}[|X_3 - E[X_3]| \geq E[X_3]] \leq \frac{\text{Var}[X_3]}{|E[X_3]|^2}.$$

Need the variance of $X_3 = \sum_{(i,j,k) \in S_3} 1_{i,j,k}$,

$$X_3^2 = \sum_{(i,j,k) \in S_3} \sum_{(i',j',k') \in S_3} 1_{i,j,k} 1_{i',j',k'}.$$
Analytical Results
Proofs for the 3-clique case

\[X_3^2 = \sum_{(i,j,k) \in S_3(n)} 1_{i,j,k} + \sum_{(i,j,k) \in S_3(n)} \sum_{l \in S_1(n-3)} (1_{i,j,k} 1_{i,j,l} + 1_{i,j,k} 1_{j,k,l} + 1_{i,j,k} 1_{k,i,l}) + \]

\[+ \sum_{(i,j,k) \in S_3(n)} \sum_{u,v \in S_2(n-3)} (1_{i,j,k} 1_{i,u,v} + 1_{i,j,k} 1_{j,u,v} + 1_{i,j,k} 1_{k,u,v}) + \]

\[+ \sum_{(i,j,k) \in S_3(n)} \sum_{(i',j',k') \in S_3(n-3)} 1_{i,j,k} 1_{i',j',k'}\]
Analytical Results
Proofs for the 3-clique case

\[X_3^2 = \sum_{(i,j,k) \in S_3(n)} 1_{i,j,k} + \sum_{(i,j,k) \in S_3(n)} \sum_{l \in S_1(n-3)} (1_{i,j,k} 1_{i,j,l} + 1_{i,j,k} 1_{j,k,l} + 1_{i,j,k} 1_{k,i,l}) + \]

\[+ \sum_{(i,j,k) \in S_3(n)} \sum_{u,v \in S_2(n-3)} (1_{i,j,k} 1_{i,u,v} + 1_{i,j,k} 1_{j,u,v} 1_{i,j,k} 1_{u,v}) + \]

\[+ \sum_{(i,j,k) \in S_3(n)} \sum_{(i',j',k') \in S_3(n-3)} 1_{i,j,k} 1_{i',j',k'} \]

\[\mathbb{E}[X_3^2] = |S_3| p^3 + 3 |S_3| (n-3) p^5 + 3 |S_3| \binom{n-3}{2} p^6 + |S_3| \binom{n-3}{3} p^6. \]

Thus

\[\text{Var}[X_3] = \mathbb{E}[X_3^2] - |\mathbb{E}[X_3]|^2 = \ldots = \theta(n^3 p^3 + n^4 p^5 + n^5 p^6). \]
Analytical Results
Proofs for the 3-clique case

and:

\[\text{Prob}[X_3 = 0] \leq \frac{\theta(n^3 p^3 + n^4 p^5 + n^5 p^6)}{\theta(n^6 p^6)} \left(\frac{1}{(np)^3} + \frac{1}{n} \right) \to 0. \]
Analytical Results
Proofs for the 3-clique case

and:

\[\text{Prob}[X_3 = 0] \leq \frac{1}{\theta(n^6 p^6)} \frac{1}{(np)^3} + \frac{1}{n} \to 0. \]

Similar proofs for the other cases (4-cliques and q-cliques).
Analytical Results
Behavior at the threshold

In general we obtain a "coarse threshold". Recall a Poisson process X with parameter λ has p.m.f. $\text{Prob}[X = k] = e^{-\lambda} \frac{\lambda^k}{k!}$.

Theorem

In $G_{n,p}$,

1. For $p = \frac{c}{n}$, X_3 is asymptotically Poisson with parameter $\lambda = c^3/6$.
2. For $p = \frac{c}{n^{2/3}}$, X_4 is asymptotically Poisson with parameter $\lambda = c^6/24$.
Analytical Results
Behavior at the threshold

In general we obtain a "coarse threshold". Recall a Poisson process X with parameter λ has p.m.f. $\text{Prob}[X = k] = e^{-\lambda} \frac{\lambda^k}{k!}$.

Theorem

In $G_{n,p}$,

1. For $p = \frac{c}{n}$, X_3 is asymptotically Poisson with parameter $\lambda = c^3 / 6$.
2. For $p = \frac{c}{n^{2/3}}$, X_4 is asymptotically Poisson with parameter $\lambda = c^6 / 24$.

Theorem

In $\Gamma^{n,m}$,

1. For $m = cn$, X_3 is asymptotically Poisson with parameter $\lambda = 4c^3 / 3$.
2. For $m = cn^{4/3}$, X_4 is asymptotically Poisson with parameter $\lambda = 8c^6 / 3$.
Analytical Results
Connected Components

$G_{n,p}$ class of random graphs has a remarkable property in regards to the largest connected component. We shall express the result in the class $\Gamma^{n,m}$.
Analytical Results
Connected Components

Theorem

1. Let $m = m(n)$ satisfies $m \ll \frac{1}{2} n \log(n)$. Then

$$\lim_{n \to \infty} \text{Prob}[G \in \Gamma^{n,m} \text{ is connected}] = 0$$

2. Let $m = m(n)$ satisfies $m \gg \frac{1}{2} n \log(n)$. Then

$$\lim_{n \to \infty} \text{Prob}[G \in \Gamma^{n,m} \text{ is connected}] = 1$$
Analytical Results

Connected Components

Theorem

1. Let \(m = m(n) \) satisfies \(m \ll \frac{1}{2} n \log(n) \). Then

\[
\lim_{n \to \infty} \Pr[G \in \Gamma^{n,m} \text{ is connected}] = 0
\]

2. Let \(m = m(n) \) satisfies \(m \gg \frac{1}{2} n \log(n) \). Then

\[
\lim_{n \to \infty} \Pr[G \in \Gamma^{n,m} \text{ is connected}] = 1
\]

3. Assume \(m = \frac{1}{2} n \log(n) + tn + o(n) \), where \(o(n) \ll n \). Then

\[
\lim_{n \to \infty} \Pr[G \in \Gamma^{n,m} \text{ is connected}] = e^{-e^{-2t}}
\]
Analytical Results
Connected Components

Theorem

1. Let $m = m(n)$ satisfies $m \ll \frac{1}{2} n \log(n)$. Then

$$\lim_{n \to \infty} \text{Prob}[G \in \Gamma^{n,m} \text{ is connected}] = 0$$

2. Let $m = m(n)$ satisfies $m \gg \frac{1}{2} n \log(n)$. Then

$$\lim_{n \to \infty} \text{Prob}[G \in \Gamma^{n,m} \text{ is connected}] = 1$$

3. Assume $m = \frac{1}{2} n \log(n) + tn + o(n)$, where $o(n) \ll n$. Then

$$\lim_{n \to \infty} \text{Prob}[G \in \Gamma^{n,m} \text{ is connected}] = e^{-e^{-2t}}$$

In this case $\frac{1}{2} n \log(n)$ is known as a strong threshold.
Numerical Results
3-cliques & Connectivity results

Results for $n = 1000$ vertices.

1. 3-cliques. Recall $E[X_3] \sim m^3$

2. Connectivity. Recall the connectivity threshold is $\frac{1}{2} n \log(n) = 3454$.
Numerical Results

3-cliques

Random graphs with n=1000 vertices

Number of 3-cliques vs Nr. Edges m
Numerical Results

3-cliques
Numerical Results

Connectivity

Random graphs with n=1000 vertices

Number of connected components vs. Nr. Edges m
Numerical Results

Connectivity

Random graphs with n=1000 vertices, m=2892

Number of connected components vs. Nr. Edges m
Numerical Results

Connectivity

Random graphs with n=1000 vertices
Numerical Results
Connectivity

Random graphs with $n=1000$ vertices, $m_r=2892$
References

F. Chung, **Spectral Graph Theory**, AMS 1997.

P. Erdős, A. Rényi, On The Evolution of Random Graphs
