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Data Graphs Graph Analysis

Data Sets

Today we discuss type of data sets and graphs. The overarching problem
is the following:

Main Problem
Given a graph, discover if it can be explained as a structured data graph,
or just as a random graph.

We shall discuss first how to construct a sequence of nested graphs from a
data set.
Two types of data:

1 Percolation model
2 Weighted graphs
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Data Graphs Graph Analysis

Data Sets
Percolation Models

Fix a set of points in Rd . Example, for d = 2:

n = 102 = 100
Uniform (regular) lat-
tice.
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Data Graphs Graph Analysis

Data Sets
Percolation Models

Construct the matrix of pairwise distances:

V =
(
‖rk − r j‖

)
1≤k,j≤n

, rk = (xk , yk).

Then sort the set of distances in an ascending order. This way we define
an order on the set of pairs of points. Implicitly this defines an ascending
order on the set of edges. We obtain a sequence of nested graphs

(Gt)t≥0 0 ≤ t ≤ m = n(n − 1)/2

where t indicates the number of edges in the graph Gt .
Thus Gt has n nodes and t edges.
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Data Graphs Graph Analysis

Data Sets
Percolation Models

Play Examples: n = 100, regular/irregular, different types of norms:

‖rk − r j‖2 =
√

(xk − xj)2 + (yk − yj)2

‖rk − r j‖∞ = max(|xk − xj |, |yk − yj |)
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Data Graphs Graph Analysis

Data Sets
Weighted Graphs

A different class of graphs: weighted graphs, (V, E ,W ). Examples:
1 Joint co-authorship papers: V is the set of all authors; E is the list of

joint papers; w(ei ,j) is the number of papers where both i and j are
co-authors.

2 Protein-protein interaction or simultaneous expression.
3 Social networks: Facebook, LinkedIn: V is the set of users; E is the

list of friendship links, or connections; w(ei ,j) is a measure of activity
between i and j , e.g. number of endorsements, or ’like’, or comments
between i and j .

4 Communication networks ...
5 Email datasets (Enron)
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Data Graphs Graph Analysis

Data Sets
Weighted Graphs

The sequence of nested graphs is obtained by sort the edges according to
their weights: start with the largest weight first, and then pick the next
largest weight, and so on.
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Data Graphs Graph Analysis

Data Sets
Weighted Graphs

The sequence of nested graphs is obtained by sort the edges according to
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Data Graphs Graph Analysis

Data Sets
Data Size

Size matters:
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Data Graphs Graph Analysis

Data Sets
Data Size

Size matters:

By Paul Signac - Ophelia2, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=12570159
(L’Hirondelle Steamer on the Seine)
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Data Graphs Graph Analysis

Data Sets
Public Datasets

On Canvas you can find links to several public databases:
1 Duke: https://dnac.ssri.duke.edu/datasets.php
2 Stanford: https://snap.stanford.edu/data/
3 Uni. Koblenz: http://konect.uni-koblenz.de/
4 M. Newman (U. Michigan):

http://www-personal.umich.edu/ mejn/netdata/
5 A.L. Barabasi (U. Notre Dame):

http://www3.nd.edu/ networks/resources.htm
6 UCI: https://networkdata.ics.uci.edu/resources.php
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Data Graphs Graph Analysis

Spectral Analysis
Basic Properties

Last time we learned how to construct: the Adjacency matrix A, the
Degree matrix D, the (unnormalized symmetric) graph Laplacian matrix
∆ = D − A, the normalized Laplacian matrix ∆̃ = D−1/2∆D−1/2, and the
normalized asymmetric Laplacian matrix L = D−1∆.

We denote: n the number of vertices (also known as the size of the
graph), m the number of edges, d(v) the degree of vertex v , d(i , j) the
distance between vertex i and vertex j (length of the shortest path
connecting i to j), and by D the diameter of the graph (the largest
distance between two vertices = ”longest shortest path”).
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Data Graphs Graph Analysis

Spectral Analysis
Basic Properties

In this section we summarize spectral properties of the Laplacian matrices.

Theorem
1 ∆ = ∆T ≥ 0, ∆̃ = ∆̃T ≥ 0 are positive semidefinite matrices.
2 eigs(∆̃) = eigs(L) ⊂ [0, 2].
3 0 is always an eigenvalue of ∆, ∆̃, L with same multiplicity. Its

multiplicity is equal to the number of connected components of the
graph.

4 λmax (∆) ≤ 2 maxv d(v), i.e. the lagest eigenvalue of ∆ is bounded
by twice the largest degree of the graph.
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Data Graphs Graph Analysis

Spectral Analysis
Basic Properties

Theorem

Let 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2 be the eigenvalues of ∆̃ (or L), that is
eigs(∆̃) = {λ0, λ1, · · · , λn−1} = eigs(L). Then:

1
∑n−1

i=0 λi ≤ n.
2
∑n−1

i=0 λi = n if and only if the graph is connected (i.e. no isolated
vertices).

3 λ1 ≤ n
n−1 .

4 λ1 = n
n−1 if and only if the graph is complete (i.e. any two vertices

are connected by an edge).
5 If the graph is not complete then λ1 ≤ 1.
6 If the graph is connected then λ1 > 0. If λi = 0 and λi+1 6= 0 then

the graph has exactly i + 1 connected components.
7 If the graph is connected (no isolated vertices) then λn−1 ≥ n

n−1 .
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Data Graphs Graph Analysis

Spectral Analysis
Smallest nonnegative eigenvalue

Theorem

Assume the graph is connected. Thus λ1 > 0. Denote by D its diameter
and by dmax , d̄ , dH the maximum, average, and harmonic avergae of the
degrees (d1, · · · , dn):

dmax = max
j

dj , d̄ = 1
n

n∑
j=1

dj ,
1

dH
= 1

n

n∑
j=1

dj
.

Then
1 λ1 ≥ 1

nD .
2 Let µ = max1≤j≤n−1 |1− λj |. Then

1 + (n − 1)µ2 ≥ n
dH

(1− (1 + µ)( d̄
dH
− 1)).
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Data Graphs Graph Analysis

Spectral Analysis
Smallest nonnegative eigenvalue

Theorem

[continued]
3 Assume D ≥ 4. Then

λ1 ≤ 1− 2
√

dmax − 1
dmax

(1− 2
D ) + 2

D .
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Data Graphs Graph Analysis

Spectral Analysis
Comments on the proof

”Ingredients” and key relations:
1. Let f = (f1, f2, · · · , fn) ∈ Rn be a n-vector. Then:

〈∆f , f 〉 =
∑
x∼y

(fx − fy )2

where x ∼ y if there is an edge between vertex x and vertex y (i.e.
Ax ,y = 1).
This proves positivity of all operators.
2. Last time we showed eigs(∆̃) = eigs(L) because ∆̃ and L are similar
matrices.
3. 0 is an eigenvalue for ∆ with eigenvector 1 = (1, 1, · · · , 1). If multiple
connected components, define such a 1 vector for each component (and 0
on rest).
4. λmax (∆̃) = 1 + λmax (D−1/2AD−1/2).
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Data Graphs Graph Analysis

Spectral Analysis
Comments on the proof - 2

λmax (D−1/2AD−1/2) = max
‖f ‖=1

〈D−1/2AD−1/2f , f 〉 = max
‖f ‖=1

∑
i ,j

Ai ,j
fi√
di

fj√
dj

Next use Cauchy-Schwartz to get∣∣∣∣∣∣
∑
i ,j

Ai ,j
fi√
di

fj√
dj

∣∣∣∣∣∣ ≤
∑

i

f 2
i
di

∑
j

Ai ,j =
∑

i
f 2
i = ‖f ‖2 = 1.

Thus λmax (∆̃) ≤ 2. Similarly λmax (∆) ≤ 2(maxi di ).

5. If the graph is connected, trace(∆̃) = n =
∑n−1

i=0 λi . Since λ0 = 0 we
get all statements of Theorem 2.
6. Theorem 3 is slightly more complicated (see [2]).
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Data Graphs Graph Analysis

Spectral Analysis
Special graphs: Cycles and Complete graphs

Cycle graphs: like the hexagon in HW2.
Remark: Adjacency matrices are circulant, and so are ∆, ∆̃ = L.

Then argue the FFT forms a ONB of eigenvectors. Compute the
eigenvalues as FFT of the generating sequence.

Consequence: The normalized Laplacian has the following eigenvalues:
1 For cycle on n vertices: λk = 1− cos 2πk

n , 0 ≤ k ≤ n − 1.
2 For the complete graph on n vertices:

λ0 = 0 , λ1 = · · · = λn−1 = n
n − 1 .
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Data Graphs Graph Analysis
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