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Graphs
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Definitions
G=V,8)

An undirected graph G is given by two pieces of information: a set of
vertices V and a set of edges £, G = (V,€).
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Definitions
G=V,8)

17 . V={1,23,4,56,7,8,9}
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Graphs
0@000000000

Definitions
G=V,8)

1P, V={123.4567.389)
™ 5 (o Lo E={(12).24).(4,7),
M I (6,7),(1,5), (5,6), (5,7),

6 {7 (2,8),(8,9)}
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Graphs
0@000000000

Definitions
G=V,8)

P V={1.23,4567.89)
g s {12,244,
Ny, Sa gt (6,7),(1,5), (5,6), (5.7),

n =9 vertices

m =9 edges
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Graphs
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Definitions
G=V,8)

In an undirected graph, edges are not oriented. Thus (1,2) ~ (2,1) in the
example.
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00®00000000

Definitions
G=V,8)

In an undirected graph, edges are not oriented. Thus (1,2) ~ (2,1) in the
example. Other types of graphs:
@ Directed Graphs: In a directed
graph, edges are oriented. In
general (i,j) % (j, 1)
@ Weighted Graphs: Each edge
has an associated weight. A
weighted graph is defined by a
triple (V, &, w), where
w : & = R is a weight function.
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Graphs
00®00000000

Definitions
G=V,8)

In an undirected graph, edges are not oriented. Thus (1,2) ~ (2,1) in the
example. Other types of graphs:

@ Directed Graphs: In a directed e Y& .3
graph, edges are oriented. In ms / AT
general (i.]) 7 (j ). T AW

@ Weighted Graphs: Each edge PN N e, Jons

has an associated weight. A
weighted graph is defined by a
triple (V, &, w), where

w : & — R is a weight function. /8
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Graphs
000@0000000

Definitions
Paths

Concept: A path is a sequence of edges where the right vertex of one edge
coincides with the left vertex of the following edge.
Example:
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Graphs
000@0000000

Definitions
Paths

Concept: A path is a sequence of edges where the right vertex of one edge
coincides with the left vertex of the following edge.
Example:

{(17 2)7 (2? 4)’ (4’ 7)7 (77 5)} =
= {(1? 2)7 (2? 4)’ (47 7)? (57 7)}
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Graphs
0000@000000

Definitions
Paths

Concept: A path is a sequence of edges where the right vertex of one edge
coincides with the left vertex of the following edge.
Example:

{(17 2)7 (2> 4)a (45 7)7 (77 5)} =
= {(1? 2)7 (2? 4)’ (47 7)? (57 7)}
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Definitions
Graph Attributes

Graph Attributes (Properties):

@ Connected Graphs: Graphs where any two distinct vertices can be
connected through a path.
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Definitions
Graph Attributes

Graph Attributes (Properties):

@ Connected Graphs: Graphs where any two distinct vertices can be
connected through a path.

e Complete (or Totally Connected) Graphs: Graphs where any two
distinct vertices are connected by an edge.
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Graphs
00000@00000

Definitions
Graph Attributes

Graph Attributes (Properties):

@ Connected Graphs: Graphs where any two distinct vertices can be
connected through a path.

e Complete (or Totally Connected) Graphs: Graphs where any two
distinct vertices are connected by an edge.

A complete graph with n vertices has m = ( g ) = "(";1) edges.
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Graphs
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Definitions
Graph Attributes

Example:
1 .2
-3
{ . 4
9 - 5 g /
6 {7
N
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Graphs
000000@0000

Definitions
Graph Attributes

Example:
S
/ -3
@ This graph is not
9 - e p connected.
@ It is not complete.
5 4. 7 e It is the union of two

connected graphs.
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Graphs
0000000e000

Definitions
Metric

Distance between vertices: For two vertices x, y, the distance d(x, y) is the
length of the shortest path connecting x and y. If x = y then d(x, x) = 0.
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Graphs
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Definitions
Metric

Distance between vertices: For two vertices x, y, the distance d(x, y) is the
length of the shortest path connecting x and y. If x = y then d(x, x) = 0.
In a connected graph the distance between any two vertices is finite.

In a complete graph the distance between any two distinct vertices is 1.
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Graphs
0000000e000

Definitions
Metric

Distance between vertices: For two vertices x, y, the distance d(x, y) is the
length of the shortest path connecting x and y. If x = y then d(x, x) = 0.
In a connected graph the distance between any two vertices is finite.
In a complete graph the distance between any two distinct vertices is 1.
The converses are also true:

Q IfVx,y € &, d(x,y) < oo then (V, ) is connected.

Q IfVx#yef&, d(x,y)=1then (V,E) is complete.
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Graphs
00000000800

Definitions
Metric

Graph diameter: The diameter of a graph G = (V, ) is the largest
distance between two vertices of the graph:

D(G) = max d(x,y)

X, y€V
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Graphs
00000000800

Definitions
Metric

Graph diameter: The diameter of a graph G = (V, ) is the largest
distance between two vertices of the graph:

D —
(G) = max d(x.y)

Example:

/8
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Graphs
00000000800

Definitions
Metric

Graph diameter: The diameter of a graph G = (V, ) is the largest
distance between two vertices of the graph:

D(G) = max d
(G) X,yag](/ (x,¥)
Example:

NN/, D =5=d(6,9) = d(3,9)
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Graphs
00000000080

Definitions
The Adjacency Matrix

For a graph G = (V, £) the adjacency matrix is the n x n matrix A defined
by:

A 1 if (i,j)e€
YY1 0 otherwise
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Graphs
00000000080

Definitions
The Adjacency Matrix

For a graph G = (V, £) the adjacency matrix is the n x n matrix A defined
by:

1) —

A___{ 1 if (ij)€€

0 otherwise
Example:
1
b
5 i/" \‘\?7 2
\\.“ /e
\ ’,- /
4 3
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Graphs
00000000080

Definitions
The Adjacency Matrix

For a graph G = (V, £) the adjacency matrix is the n x n matrix A defined
by:

A___{ 1 if (ij)€€

Y10 otherwise
Example:
1

e 010001
Td &Y. 1 0100
/ A=|101 010
“ 0 0101
10010

\ /

4 3
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Graphs
00000000000

Definitions
The Adjacency Matrix

For undirected graphs the adjacency matrix is always symmetric:
AT = A

For directed graphs the adjacency matrix may not be symmetric.
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Graphs
00000000000

Definitions
The Adjacency Matrix

For undirected graphs the adjacency matrix is always symmetric:
AT = A
For directed graphs the adjacency matrix may not be symmetric.

For weighted graphs G = (V, &, W), the weight matrix W is simply given
by

Wij = { 0 otherwise
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Matrix Analysis
©00000000

Vertex Degree
d(v)

For an undirected graph G = (V, &), let d(v) denote the number of edges
at vertex v € V. The number d(v) is called the degree (or valency) of
vertex v.
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For an undirected graph G = (V, &), let d(v) denote the number of edges
at vertex v € V. The number d(v) is called the degree (or valency) of
vertex v. Example:
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Matrix Analysis
©00000000

Vertex Degree
d(v)

For an undirected graph G = (V, &), let d(v) denote the number of edges
at vertex v € V. The number d(v) is called the degree (or valency) of
vertex v. Example:

5 2 d(v) =2, Vv
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Vertex Degree
d(v)

For an undirected graph G = (V, &), let d(v) denote the number of edges
at vertex v € V. The number d(v) is called the degree (or valency) of
vertex v. Example:
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Matrix Analysis
0®0000000

Vertex Degree
Matrix D

For an undirected graph G = (V, &) of n vertices, we denote by D the
n x n diagonal matrix of degrees: D;; = d(i).
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Vertex Degree
Matrix D

For an undirected graph G = (V, &) of n vertices, we denote by D the
n x n diagonal matrix of degrees: D;; = d(i). Example:

Radu Balan () Graphs 1



Matrix Analysis
0®0000000

Vertex Degree
Matrix D

For an undirected graph G = (V, &) of n vertices, we denote by D the
n x n diagonal matrix of degrees: D;; = d(i). Example:

1

\\\\ 2 00 00O
5 {”/ \\.“, 2 02000
: / A=10 0 2 0 O
| 00020
0000 2

-\\ l,-/'

4 3
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Matrix Analysis
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Graph Laplacian
A

For a graph G = (V, ) the graph Laplacian is the n x n symmetric matrix
A defined by:
A=D-A

Example:
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Matrix Analysis
00®000000

Graph Laplacian
A

For a graph G = (V, ) the graph Laplacian is the n x n symmetric matrix
A defined by:

A=D—A
Example:
1
e 2 -1 0 0 -1
2 - -1 2 -1 0 0
/ A=| 0 -1 2 -1 0
/ 0o 0 -1 2 -1
\ / 1 0 0 -1 2
4 3
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Matrix Analysis
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Graph Laplacian

Example
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Matrix Analysis
000®00000

Graph Laplacian

Example

3 2 -1 0 0 -1 0 0 0 O
-1 3 0 -1 0 0 0 -1 0
5 s 4 0o 0 1 o0 -1 0 0 0 O
0 -1 0 2 0 0 -1 0 O
. , A=| -1 0 -1 0 4 -1 -1 0 0
0o 0 0 0 -1 2 -1 0 O
0o 0 0 -1 -1 -1 3 0 O
0o -1 0 0 0 0 0 2 -1
8 /Ll o o 0o o 0 O 0 -1 1 |
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Matrix Analysis
0000@0000

Normalized Laplacians
A

Normalized Laplacian: (using pseudo-inverses)
A — D—l/ZAD—1/2 — | — D—1/2AD—1/2

1 if i=jandd;>0
~ 1 . ..
Aij=S ~Taoan if (i,j))eé&

0 otherwise
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Matrix Analysis
0000@0000

Normalized Laplacians
A

Normalized Laplacian: (using pseudo-inverses)
A — D—l/ZAD—1/2 — | — D—1/2AD—1/2

1 if i=jandd;>0
~ 1 . ..
0 otherwise

Normalized Asymmetric Laplacian:
L=D'A=/-D'A
1 if i=jand d; >0
Lij=1% —gt7 if (i,j)e&
0 otherwise
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Matrix Analysis
0000@0000

Normalized Laplacians
A

Normalized Laplacian: (using pseudo-inverses)
A — D—l/ZAD—1/2 — | — D—1/2AD—1/2

1 if i=jandd;>0
~ _ 1 . ..
Aij= T000 if (i,j))eé&

0 otherwise

Normalized Asymmetric Laplacian:
L=D'A=/-D'A
1 if i=jand d; >0
Lij=1% —gt7 if (i,j)e&
0 otherwise

Note:
AD Y =1—-AD =LT ; (DN =(D"Y?)=0if d(k) =0



Matrix Analysis
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Normalized Laplacians

Example

Example:
1
e
5¢ &Y
\ /
\ ’/
4 3
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Matrix Analysis
000008000

Normalized Laplacians

Example

Example:
1

e 1 -05 0 0 05

5 | -05 1 -05 0 0

A=| 0o -05 1 -05 0
/ 0 0 -05 1 —-05

\ / —05 0 0 -05 1

4 3
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Matrix Analysis
000000800

Spectral Analysis

Eigenvalues and Eigenvectors

Recall the eigenvalues of a matrix T are the zeros of the characteristic

polynomial:
pr1(z) = det(zl — T) = 0.

There are exactly n eigenvalues (including multiplicities) for a n x n matrix
T. The set of eigenvalues is calles its spectrum.

Radu Balan () Graphs 1
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000000800

Spectral Analysis

Eigenvalues and Eigenvectors

Recall the eigenvalues of a matrix T are the zeros of the characteristic
polynomial:

pr1(z) = det(zl — T) = 0.
There are exactly n eigenvalues (including multiplicities) for a n x n matrix

T. The set of eigenvalues is calles its spectrum.

If A is an eigenvalue of T, then its associated eigenvector is the non-zero
n-vector x such that Tx = Ax.
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Matrix Analysis
000000800

Spectral Analysis

Eigenvalues and Eigenvectors

Recall the eigenvalues of a matrix T are the zeros of the characteristic
polynomial:

pr1(z) = det(zl — T) = 0.

There are exactly n eigenvalues (including multiplicities) for a n x n matrix
T. The set of eigenvalues is calles its spectrum.

If A is an eigenvalue of T, then its associated eigenvector is the non-zero
n-vector x such that Tx = Ax.

Remark. Since det(A;Ay) = det(A;)det(A;) and L = D-Y/2ADY/? it
follows that eigs(A) = eigs(L) = eigs(LT).
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Matrix Analysis
000000080

Spectral Analysis

Rayleigh Quotient

Recall the following result:

Theorem

Assume T is a real symmetric n X n matrix. Then:

O AIll eigenvalues of T are real numbers.

@ There are n eigenvectors that can be normalized to form an
orthonormal basis for R".

© The largest eigenvalue Ap.x and the smallest eigenvalue A, satisfy

(Tx, x) A = min (Tx, x)
) x#0 (X, X)
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Spectral Analysis
Rayleigh Quotient

For two symmetric matrices T,S we say T < S if (Tx, x) < (Sx, x) for all
x € R".
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Matrix Analysis
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Spectral Analysis

Rayleigh Quotient

For two symmetric matrices T,S we say T < S if (Tx, x) < (Sx, x) for all
x € R".

Consequence 3 can be rewritten:

)\minl S T S )\maxl
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Matrix Analysis
00000000e

Spectral Analysis
Rayleigh Quotient

For two symmetric matrices T,S we say T < S if (Tx, x) < (Sx, x) for all
x € R".

Consequence 3 can be rewritten:
)\minl S T S )\maxl

In particular we say T is positive semidefinite T > 0 if (Tx, x) > 0 for
every x.

It follows that T is positive semidefinite if and only if every eigenvalue of
T is positive semidefinite (i.e. non-negative).
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