Lecture 1: Graphs, Adjacency Matrices, Graph Laplacian

Radu Balan

January 31, 2017

Definitions

$G=(\mathcal{V}, \mathcal{E})$
An undirected graph G is given by two pieces of information: a set of vertices \mathcal{V} and a set of edges $\mathcal{E}, G=(\mathcal{V}, \mathcal{E})$.

Definitions

$G=(\mathcal{V}, \mathcal{E})$
An undirected graph G is given by two pieces of information: a set of vertices \mathcal{V} and a set of edges $\mathcal{E}, G=(\mathcal{V}, \mathcal{E})$.

Definitions

$G=(\mathcal{V}, \mathcal{E})$
An undirected graph G is given by two pieces of information: a set of vertices \mathcal{V} and a set of edges $\mathcal{E}, G=(\mathcal{V}, \mathcal{E})$.

$$
\begin{aligned}
& \mathcal{V}=? \\
& \mathcal{E}=?
\end{aligned}
$$

Definitions

$G=(\mathcal{V}, \mathcal{E})$

Definitions

$G=(\mathcal{V}, \mathcal{E})$

Definitions

$G=(\mathcal{V}, \mathcal{E})$

Definitions

$G=(\mathcal{V}, \mathcal{E})$

Definitions

$G=(\mathcal{V}, \mathcal{E})$

In an undirected graph, edges are not oriented. Thus $(1,2) \sim(2,1)$ in the example.

Definitions

$G=(\mathcal{V}, \mathcal{E})$

In an undirected graph, edges are not oriented. Thus $(1,2) \sim(2,1)$ in the example. Other types of graphs:

- Directed Graphs: In a directed graph, edges are oriented. In general $(i, j) \nsim(j, i)$.
- Weighted Graphs: Each edge has an associated weight. A weighted graph is defined by a triple $(\mathcal{V}, \mathcal{E}, w)$, where $w: \mathcal{E} \rightarrow \mathbb{R}$ is a weight function.

Definitions

$G=(\mathcal{V}, \mathcal{E})$

In an undirected graph, edges are not oriented. Thus $(1,2) \sim(2,1)$ in the example. Other types of graphs:

- Directed Graphs: In a directed graph, edges are oriented. In general $(i, j) \nsim(j, i)$.
- Weighted Graphs: Each edge has an associated weight. A weighted graph is defined by a triple $(\mathcal{V}, \mathcal{E}, w)$, where $w: \mathcal{E} \rightarrow \mathbb{R}$ is a weight function.

Definitions

Paths

Concept: A path is a sequence of edges where the right vertex of one edge coincides with the left vertex of the following edge. Example:

Definitions

Paths

Concept: A path is a sequence of edges where the right vertex of one edge coincides with the left vertex of the following edge.
Example:

$$
\begin{aligned}
& \{(1,2),(2,4),(4,7),(7,5)\}= \\
& =\{(1,2),(2,4),(4,7),(5,7)\}
\end{aligned}
$$

Definitions

Paths

Concept: A path is a sequence of edges where the right vertex of one edge coincides with the left vertex of the following edge. Example:

- 3

$$
\begin{aligned}
& \{(1,2),(2,4),(4,7),(7,5)\}= \\
& =\{(1,2),(2,4),(4,7),(5,7)\}
\end{aligned}
$$

Definitions

Graph Attributes

Graph Attributes (Properties):

- Connected Graphs: Graphs where any two distinct vertices can be connected through a path.

Definitions

Graph Attributes

Graph Attributes (Properties):

- Connected Graphs: Graphs where any two distinct vertices can be connected through a path.
- Complete (or Totally Connected) Graphs: Graphs where any two distinct vertices are connected by an edge.

Definitions

Graph Attributes

Graph Attributes (Properties):

- Connected Graphs: Graphs where any two distinct vertices can be connected through a path.
- Complete (or Totally Connected) Graphs: Graphs where any two distinct vertices are connected by an edge.
A complete graph with n vertices has $m=\binom{n}{2}=\frac{n(n-1)}{2}$ edges.

Definitions

Graph Attributes

Example:

Definitions

Graph Attributes

Example:

- This graph is not connected.
- It is not complete.
- It is the union of two connected graphs.

Definitions

Metric

Distance between vertices: For two vertices x, y, the distance $d(x, y)$ is the length of the shortest path connecting x and y. If $x=y$ then $d(x, x)=0$.

Definitions

Distance between vertices: For two vertices x, y, the distance $d(x, y)$ is the length of the shortest path connecting x and y. If $x=y$ then $d(x, x)=0$. In a connected graph the distance between any two vertices is finite. In a complete graph the distance between any two distinct vertices is 1 .

Definitions

Distance between vertices: For two vertices x, y, the distance $d(x, y)$ is the length of the shortest path connecting x and y. If $x=y$ then $d(x, x)=0$. In a connected graph the distance between any two vertices is finite. In a complete graph the distance between any two distinct vertices is 1 . The converses are also true:
(1) If $\forall x, y \in \mathcal{E}, d(x, y)<\infty$ then $(\mathcal{V}, \mathcal{E})$ is connected.
(2) If $\forall x \neq y \in \mathcal{E}, d(x, y)=1$ then $(\mathcal{V}, \mathcal{E})$ is complete.

Definitions

Metric

Graph diameter: The diameter of a graph $G=(\mathcal{V}, \mathcal{E})$ is the largest distance between two vertices of the graph:

$$
D(G)=\max _{x, y \in \mathcal{V}} d(x, y)
$$

Definitions

Metric

Graph diameter: The diameter of a graph $G=(\mathcal{V}, \mathcal{E})$ is the largest distance between two vertices of the graph:

$$
D(G)=\max _{x, y \in \mathcal{V}} d(x, y)
$$

Example:

Definitions

Metric

Graph diameter: The diameter of a graph $G=(\mathcal{V}, \mathcal{E})$ is the largest distance between two vertices of the graph:

$$
D(G)=\max _{x, y \in \mathcal{V}} d(x, y)
$$

Example:

$$
D=5=d(6,9)=d(3,9)
$$

Definitions

The Adjacency Matrix
For a graph $G=(\mathcal{V}, \mathcal{E})$ the adjacency matrix is the $n \times n$ matrix A defined by:

$$
A_{i, j}=\left\{\begin{array}{lll}
1 & \text { if } & (i, j) \in \mathcal{E} \\
0 & & \text { otherwise }
\end{array}\right.
$$

Definitions

The Adjacency Matrix
For a graph $G=(\mathcal{V}, \mathcal{E})$ the adjacency matrix is the $n \times n$ matrix A defined by:

$$
A_{i, j}=\left\{\begin{array}{lll}
1 & \text { if } & (i, j) \in \mathcal{E} \\
0 & & \text { otherwise }
\end{array}\right.
$$

Example:

Definitions

The Adjacency Matrix
For a graph $G=(\mathcal{V}, \mathcal{E})$ the adjacency matrix is the $n \times n$ matrix A defined by:

$$
A_{i, j}=\left\{\begin{array}{lll}
1 & \text { if } & (i, j) \in \mathcal{E} \\
0 & & \text { otherwise }
\end{array}\right.
$$

Example:

$$
A=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Definitions
 The Adjacency Matrix

For undirected graphs the adjacency matrix is always symmetric:

$$
A^{T}=A
$$

For directed graphs the adjacency matrix may not be symmetric.

Definitions

For undirected graphs the adjacency matrix is always symmetric:

$$
A^{T}=A
$$

For directed graphs the adjacency matrix may not be symmetric. For weighted graphs $G=(\mathcal{V}, \mathcal{E}, W)$, the weight matrix W is simply given by

$$
W_{i, j}=\left\{\begin{array}{cll}
w_{i, j} & \text { if } & (i, j) \in \mathcal{E} \\
0 & & \text { otherwise }
\end{array}\right.
$$

Vertex Degree $d(v)$

For an undirected graph $G=(\mathcal{V}, \mathcal{E})$, let $d(v)$ denote the number of edges at vertex $v \in \mathcal{V}$. The number $d(v)$ is called the degree (or valency) of vertex v.

Vertex Degree $d(v)$

For an undirected graph $G=(\mathcal{V}, \mathcal{E})$, let $d(v)$ denote the number of edges at vertex $v \in \mathcal{V}$. The number $d(v)$ is called the degree (or valency) of vertex v. Example:

1

Vertex Degree $d(v)$

For an undirected graph $G=(\mathcal{V}, \mathcal{E})$, let $d(v)$ denote the number of edges at vertex $v \in \mathcal{V}$. The number $d(v)$ is called the degree (or valency) of vertex v. Example:

1

$$
d(v)=2, \forall v
$$

Vertex Degree $d(v)$

For an undirected graph $G=(\mathcal{V}, \mathcal{E})$, let $d(v)$ denote the number of edges at vertex $v \in \mathcal{V}$. The number $d(v)$ is called the degree (or valency) of vertex v. Example:

1

$$
\begin{array}{r}
d(v)=2, \forall v \\
\text { Note: } d(i)=\sum_{j=1}^{5} A_{i, j}
\end{array}
$$

Vertex Degree

 Matrix DFor an undirected graph $G=(\mathcal{V}, \mathcal{E})$ of n vertices, we denote by D the $n \times n$ diagonal matrix of degrees: $D_{i, i}=d(i)$.

Vertex Degree

 Matrix DFor an undirected graph $G=(\mathcal{V}, \mathcal{E})$ of n vertices, we denote by D the $n \times n$ diagonal matrix of degrees: $D_{i, i}=d(i)$. Example:

1

Vertex Degree

 Matrix DFor an undirected graph $G=(\mathcal{V}, \mathcal{E})$ of n vertices, we denote by D the $n \times n$ diagonal matrix of degrees: $D_{i, i}=d(i)$. Example:

$$
A=\left[\begin{array}{lllll}
2 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 2
\end{array}\right]
$$

Graph Laplacian Δ

For a graph $G=(\mathcal{V}, \mathcal{E})$ the graph Laplacian is the $n \times n$ symmetric matrix Δ defined by:

$$
\Delta=D-A
$$

Example:

Graph Laplacian Δ

For a graph $G=(\mathcal{V}, \mathcal{E})$ the graph Laplacian is the $n \times n$ symmetric matrix Δ defined by:

$$
\Delta=D-A
$$

Example:

Graph Laplacian

Example

Graph Laplacian

Example

9 .

Normalized Laplacians

Normalized Laplacian: (using pseudo-inverses)

$$
\begin{aligned}
\tilde{\Delta} & =D^{-1 / 2} \Delta D^{-1 / 2}=I-D^{-1 / 2} A D^{-1 / 2} \\
\tilde{\Delta}_{i, j} & =\left\{\begin{array}{ccc}
1 & \text { if } & i=j \text { and } d_{i}>0 \\
-\frac{1}{\sqrt{d(i) d(j)}} & \text { if } & (i, j) \in \mathcal{E} \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Normalized Laplacians

Normalized Laplacian: (using pseudo-inverses)

$$
\begin{aligned}
\tilde{\Delta} & =D^{-1 / 2} \Delta D^{-1 / 2}=I-D^{-1 / 2} A D^{-1 / 2} \\
\tilde{\Delta}_{i, j} & =\left\{\begin{array}{ccc}
1 & \text { if } & i=j \text { and } d_{i}>0 \\
-\frac{1}{\sqrt{d(i) d(j)}} & \text { if } & (i, j) \in \mathcal{E} \\
0 & & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Normalized Asymmetric Laplacian:

$$
\begin{gathered}
L=D^{-1} \Delta=I-D^{-1} A \\
L_{i, j}=\left\{\begin{array}{ccc}
1 & \text { if } & i=j \text { and } d_{i}>0 \\
-\frac{1}{d(i)} & \text { if } & (i, j) \in \mathcal{E} \\
0 & & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Normalized Laplacians

$\tilde{\Delta}$
Normalized Laplacian: (using pseudo-inverses)

$$
\begin{aligned}
\tilde{\Delta} & =D^{-1 / 2} \Delta D^{-1 / 2}=I-D^{-1 / 2} A D^{-1 / 2} \\
\tilde{\Delta}_{i, j} & =\left\{\begin{array}{ccc}
1 & \text { if } & i=j \text { and } d_{i}>0 \\
-\frac{1}{\sqrt{d(i) d(j)}} & \text { if } & (i, j) \in \mathcal{E} \\
0 & & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Normalized Asymmetric Laplacian:

$$
\begin{gathered}
L=D^{-1} \Delta=I-D^{-1} A \\
L_{i, j}=\left\{\begin{array}{ccc}
1 & \text { if } & i=j \text { and } d_{i}>0 \\
-\frac{1}{d(i)} & \text { if } & (i, j) \in \mathcal{E} \\
0 & & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Note:

$$
\Delta D^{-1}=I-A D^{-1}=L^{T} ; \quad\left(D^{-1}\right)_{k k}=\left(D^{-1 / 2}\right)_{k k}=0 \text { if } d(k)=0
$$

Normalized Laplacians

Example

Normalized Laplacians

Example

Example:

Spectral Analysis

Eigenvalues and Eigenvectors

Recall the eigenvalues of a matrix T are the zeros of the characteristic polynomial:

$$
p_{T}(z)=\operatorname{det}(z I-T)=0 .
$$

There are exactly n eigenvalues (including multiplicities) for a $n \times n$ matrix T. The set of eigenvalues is calles its spectrum.

Spectral Analysis
 Eigenvalues and Eigenvectors

Recall the eigenvalues of a matrix T are the zeros of the characteristic polynomial:

$$
p_{T}(z)=\operatorname{det}(z I-T)=0 .
$$

There are exactly n eigenvalues (including multiplicities) for a $n \times n$ matrix T. The set of eigenvalues is calles its spectrum.
If λ is an eigenvalue of T, then its associated eigenvector is the non-zero n-vector x such that $T x=\lambda x$.

Spectral Analysis

Eigenvalues and Eigenvectors

Recall the eigenvalues of a matrix T are the zeros of the characteristic polynomial:

$$
p_{T}(z)=\operatorname{det}(z I-T)=0 .
$$

There are exactly n eigenvalues (including multiplicities) for a $n \times n$ matrix T. The set of eigenvalues is calles its spectrum.
If λ is an eigenvalue of T, then its associated eigenvector is the non-zero n-vector x such that $T x=\lambda x$.
Remark. Since $\operatorname{det}\left(A_{1} A_{2}\right)=\operatorname{det}\left(A_{1}\right) \operatorname{det}\left(A_{2}\right)$ and $L=D^{-1 / 2} \tilde{\Delta} D^{1 / 2}$ it follows that $\operatorname{eigs}(\tilde{\Delta})=\operatorname{eigs}(L)=\operatorname{eigs}\left(L^{T}\right)$.

Spectral Analysis

Rayleigh Quotient

Recall the following result:

Theorem

Assume T is a real symmetric $n \times n$ matrix. Then:
(1) All eigenvalues of T are real numbers.
(2) There are n eigenvectors that can be normalized to form an orthonormal basis for \mathbb{R}^{n}.
(3) The largest eigenvalue $\lambda_{\text {max }}$ and the smallest eigenvalue $\lambda_{\text {min }}$ satisfy

$$
\lambda_{\max }=\max _{x \neq 0} \frac{\langle T x, x\rangle}{\langle x, x\rangle}, \quad \lambda_{\min }=\min _{x \neq 0} \frac{\langle T x, x\rangle}{\langle x, x\rangle}
$$

Spectral Analysis

Rayleigh Quotient

For two symmetric matrices T, S we say $T \leq S$ if $\langle T x, x\rangle \leq\langle S x, x\rangle$ for all $x \in \mathbb{R}^{n}$.

Spectral Analysis

Rayleigh Quotient

For two symmetric matrices T, S we say $T \leq S$ if $\left\langle T_{x}, x\right\rangle \leq\langle S x, x\rangle$ for all $x \in \mathbb{R}^{n}$.
Consequence 3 can be rewritten:

$$
\lambda_{\min } I \leq T \leq \lambda_{\max } I
$$

Spectral Analysis

Rayleigh Quotient

For two symmetric matrices T, S we say $T \leq S$ if $\langle T x, x\rangle \leq\langle S x, x\rangle$ for all $x \in \mathbb{R}^{n}$.
Consequence 3 can be rewritten:

$$
\lambda_{\min } I \leq T \leq \lambda_{\max } I
$$

In particular we say T is positive semidefinite $T \geq 0$ if $\langle T x, x\rangle \geq 0$ for every x.
It follows that T is positive semidefinite if and only if every eigenvalue of T is positive semidefinite (i.e. non-negative).

References

目 B．Bollobás，Graph Theory．An Introductory Course， Springer－Verlag 1979．99（25），15879－15882（2002）．

F．Chung，L．Lu，The average distances in random graphs with given expected degrees，Proc．Nat．Acad．Sci．

囦 R．Diestel，Graph Theory，3rd Edition，Springer－Verlag 2005.
图 P．Erdös，A．Rényi，On The Evolution of Random Graphs
圊 G．Grimmett，Probability on Graphs．Random Processes on Graphs and Lattices，Cambridge Press 2010.

E J．Leskovec，J．Kleinberg，C．Faloutsos，Graph Evolution：Densification and Shrinking Diameters，ACM Trans．on Knowl．Disc．Data，1（1） 2007.

