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Graphs Matrix Analysis

Definitions
G = (V, E)

An undirected graph G is given by two pieces of information: a set of
vertices V and a set of edges E , G = (V, E).

V =?
E =?
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Graphs Matrix Analysis

Definitions
G = (V, E)

V = {1, 2, 3, 4, 5, 6, 7, 8, 9}

E = {(1, 2), (2, 4), (4, 7),

(6, 7), (1, 5), (5, 6), (5, 7),

(2, 8), (8, 9)}

n = 9 vertices

m = 9 edges
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Graphs Matrix Analysis

Definitions
G = (V, E)

In an undirected graph, edges are not oriented. Thus (1, 2) ∼ (2, 1) in the
example.

Other types of graphs:
Directed Graphs: In a directed
graph, edges are oriented. In
general (i , j) 6∼ (j , i).
Weighted Graphs: Each edge
has an associated weight. A
weighted graph is defined by a
triple (V, E ,w), where
w : E → R is a weight function.
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Graphs Matrix Analysis

Definitions
Paths

Concept: A path is a sequence of edges where the right vertex of one edge
coincides with the left vertex of the following edge.
Example:

{(1, 2), (2, 4), (4, 7), (7, 5)} =

= {(1, 2), (2, 4), (4, 7), (5, 7)}
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Graphs Matrix Analysis

Definitions
Graph Attributes

Graph Attributes (Properties):
Connected Graphs: Graphs where any two distinct vertices can be
connected through a path.

Complete (or Totally Connected) Graphs: Graphs where any two
distinct vertices are connected by an edge.

A complete graph with n vertices has m =
(

n
2

)
= n(n−1)

2 edges.
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Graphs Matrix Analysis

Definitions
Graph Attributes

Example:

This graph is not
connected.
It is not complete.
It is the union of two
connected graphs.
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Graphs Matrix Analysis

Definitions
Metric

Distance between vertices: For two vertices x , y , the distance d(x , y) is the
length of the shortest path connecting x and y . If x = y then d(x , x) = 0.

In a connected graph the distance between any two vertices is finite.
In a complete graph the distance between any two distinct vertices is 1.
The converses are also true:

1 If ∀x , y ∈ E , d(x , y) <∞ then (V, E) is connected.
2 If ∀x 6= y ∈ E , d(x , y) = 1 then (V, E) is complete.
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Graphs Matrix Analysis

Definitions
Metric

Graph diameter: The diameter of a graph G = (V, E) is the largest
distance between two vertices of the graph:

D(G) = max
x ,y∈V

d(x , y)

Example:

D = 5 = d(6, 9) = d(3, 9)
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Graphs Matrix Analysis

Definitions
The Adjacency Matrix

For a graph G = (V, E) the adjacency matrix is the n× n matrix A defined
by:

Ai ,j =
{

1 if (i , j) ∈ E
0 otherwise

Example:

A =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0
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Graphs Matrix Analysis

Definitions
The Adjacency Matrix

For undirected graphs the adjacency matrix is always symmetric:

AT = A

For directed graphs the adjacency matrix may not be symmetric.

For weighted graphs G = (V, E ,W ), the weight matrix W is simply given
by

Wi ,j =
{

wi ,j if (i , j) ∈ E
0 otherwise
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Graphs Matrix Analysis

Definitions
The Adjacency Matrix

For undirected graphs the adjacency matrix is always symmetric:

AT = A

For directed graphs the adjacency matrix may not be symmetric.
For weighted graphs G = (V, E ,W ), the weight matrix W is simply given
by

Wi ,j =
{

wi ,j if (i , j) ∈ E
0 otherwise

Radu Balan () Graphs 1



Graphs Matrix Analysis

Vertex Degree
d(v)

For an undirected graph G = (V, E), let d(v) denote the number of edges
at vertex v ∈ V. The number d(v) is called the degree (or valency) of
vertex v .

Example:

d(v) = 2 , ∀v

Note: d(i) =
∑5

j=1 Ai ,j
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Graphs Matrix Analysis

Vertex Degree
Matrix D

For an undirected graph G = (V, E) of n vertices, we denote by D the
n × n diagonal matrix of degrees: Di ,i = d(i).

Example:

A =


2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2
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Graphs Matrix Analysis

Graph Laplacian
∆

For a graph G = (V, E) the graph Laplacian is the n × n symmetric matrix
∆ defined by:

∆ = D − A

Example:

∆ =


2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2
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Graphs Matrix Analysis

Graph Laplacian
∆

For a graph G = (V, E) the graph Laplacian is the n × n symmetric matrix
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Graphs Matrix Analysis

Graph Laplacian
Example

∆ =



2 −1 0 0 −1 0 0 0 0
−1 3 0 −1 0 0 0 −1 0
0 0 1 0 −1 0 0 0 0
0 −1 0 2 0 0 −1 0 0
−1 0 −1 0 4 −1 −1 0 0
0 0 0 0 −1 2 −1 0 0
0 0 0 −1 −1 −1 3 0 0
0 −1 0 0 0 0 0 2 −1
0 0 0 0 0 0 0 −1 1
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Graphs Matrix Analysis

Graph Laplacian
Example

∆ =



2 −1 0 0 −1 0 0 0 0
−1 3 0 −1 0 0 0 −1 0
0 0 1 0 −1 0 0 0 0
0 −1 0 2 0 0 −1 0 0
−1 0 −1 0 4 −1 −1 0 0
0 0 0 0 −1 2 −1 0 0
0 0 0 −1 −1 −1 3 0 0
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Graphs Matrix Analysis

Normalized Laplacians
∆̃

Normalized Laplacian: (using pseudo-inverses)
∆̃ = D−1/2∆D−1/2 = I − D−1/2AD−1/2

∆̃i ,j =


1 if i = j and di > 0

− 1√
d(i)d(j)

if (i , j) ∈ E
0 otherwise

Normalized Asymmetric Laplacian:
L = D−1∆ = I − D−1A

Li ,j =


1 if i = j and di > 0
− 1

d(i) if (i , j) ∈ E
0 otherwise

Note:
∆D−1 = I − AD−1 = LT ; (D−1)kk = (D−1/2)kk = 0 if d(k) = 0
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Graphs Matrix Analysis

Normalized Laplacians
Example

Example:

∆̃ =


1 −0.5 0 0 −0.5
−0.5 1 −0.5 0 0

0 −0.5 1 −0.5 0
0 0 −0.5 1 −0.5
−0.5 0 0 −0.5 1
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Graphs Matrix Analysis

Spectral Analysis
Eigenvalues and Eigenvectors

Recall the eigenvalues of a matrix T are the zeros of the characteristic
polynomial:

pT (z) = det(zI − T ) = 0.

There are exactly n eigenvalues (including multiplicities) for a n× n matrix
T . The set of eigenvalues is calles its spectrum.

If λ is an eigenvalue of T , then its associated eigenvector is the non-zero
n-vector x such that Tx = λx .
Remark. Since det(A1A2) = det(A1)det(A2) and L = D−1/2∆̃D1/2 it
follows that eigs(∆̃) = eigs(L) = eigs(LT ).
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Graphs Matrix Analysis

Spectral Analysis
Rayleigh Quotient

Recall the following result:

Theorem
Assume T is a real symmetric n × n matrix. Then:

1 All eigenvalues of T are real numbers.
2 There are n eigenvectors that can be normalized to form an

orthonormal basis for Rn.
3 The largest eigenvalue λmax and the smallest eigenvalue λmin satisfy

λmax = max
x 6=0

〈Tx , x〉
〈x , x〉 , λmin = min

x 6=0

〈Tx , x〉
〈x , x〉

Radu Balan () Graphs 1



Graphs Matrix Analysis

Spectral Analysis
Rayleigh Quotient

For two symmetric matrices T , S we say T ≤ S if 〈Tx , x〉 ≤ 〈Sx , x〉 for all
x ∈ Rn.

Consequence 3 can be rewritten:

λminI ≤ T ≤ λmax I

In particular we say T is positive semidefinite T ≥ 0 if 〈Tx , x〉 ≥ 0 for
every x .
It follows that T is positive semidefinite if and only if every eigenvalue of
T is positive semidefinite (i.e. non-negative).
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Graphs Matrix Analysis
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