AMSC/MATH 420, Spring 2017
 Second Solo Homework:
 Introduction to the Thread

Due Thursday, February 9
Exercise 1. Compute $m_{i}, v_{i j}$, and $c_{i j}$ for each of the following groups of assests based on adjusted daily closing price data with uniform weights:
(i) VITSX, VFIUX, and VGSLX in 2016.
(ii) VITSX, VFIUX, and VGSLX in 2015 and 2016.
(iii) VITSX, VFIUX, VGSLX, Apple, Exxon-Mobil, and UPS in 2016.
(iv) VITSX, VFIUX, VGSLX, Apple, Exxon-Mobil, and UPS in 2015 and 2016.
a. Describe the assets VITSX, VFIUX, and VGSLX. Display m_{i} as a 3 -vector and $v_{i j}$ and $c_{i j}$ as 3×3-matrices for groups (i) and (ii). Explain the differences between these objects for groups (i) and (ii).
b. Compute a complete set of eigenpairs of the 3×3-matrices $\left\{v_{i j}\right\}$ for groups (i) and (ii). What conclusions do you draw from these?
c. Display m_{i} as a 6 -vector and $v_{i j}$ and $c_{i j}$ as 6×6-matrices for groups (iii) and (iv). Explain the differences between these objects for groups (iii) and (iv).
d. Compute a complete set of eigenpairs for the 6×6-matrices $\left\{v_{i j}\right\}$ for groups (iii) and (iv). What conclusions do you draw from these?
e. Give short explanations for the values of $c_{i j}$ that you computed for groups (iii) and (iv).

Exercise 2. Consider the three undirected hexagonal graphs shown in Figures 1, 2, and 3. They are each built from a hexagon, with a center added for the graph in Figure 2.
a. For each graph find the number of vertices n, the number of edges m, and write down the list of vertices \mathcal{V} and the list of edges \mathcal{E}.
b. For each graph compute the graph Laplacian Δ, the normalized graph Laplacian $\tilde{\Delta}$ and the normalized asymmetric Laplacian \tilde{L}.
c. For each graph compute a complete set of eigenpairs for each of the Laplacian matrices Δ, $\tilde{\Delta}$, and \tilde{L}.
d. Explain how the symmetry of the graphs is reflected in the spectra of the matrices that was computed in part c.
e. Repeat parts b and c for the analogous graphs built from a regular polygon with 100 vertices. Can you guess the spectrum of the Laplacian matrices in the general case of n vertices?

Figure 1: A Hexagonal Graph

Figure 2: A Hexagonal Graph plus Star

Figure 3: A Hexagonal Complete Graph

