# Math 420, Spring 2017 

Fifth Team Homework
due Tuesday, 18 April, 2017

## Exercise 1.

Consider the optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & 2\left|x_{1}\right|+x_{2} \\
\text { subject to } & x_{1}^{2}+x_{1} x_{2}+x_{2}^{2} \leq 2
\end{array}
$$

1. Prove the problem is a convex optimization problem.
2. Re-write it as one type of the convex optimization problems we studied in class.
3. Write a CVX code and solve it. Send in the CVX code and the print-out of the results.

## Exercise 2.

Let $C_{1}, C_{2}, C_{3}$ be the following symmetric matrices:

$$
C_{1}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 1 & 0 \\
3 & 0 & -1
\end{array}\right], C_{2}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 2
\end{array}\right], C_{3}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

Consider the following optimization problem where the unknown is a $3 \times 3$ symmetric matrix $X=X^{T} \in \mathbb{R}^{3 \times 3}$ :

$$
\begin{array}{ll}
\operatorname{minimize} & \left|\operatorname{trace}\left(C_{1} X\right)\right| \\
\text { subject to } & \operatorname{trace}\left(C_{2} X\right)=0 \\
& \operatorname{trace}\left(C_{3} X\right)=2
\end{array}
$$

1. Show this problem is a convex optimization problem.
2. Write the problem as a Linear Program.
3. Implement the problem in CVX and solve it. Print out the code and the solutions.
