Math 420, Spring 2017 Fourth Team Homework

due Thursday, 13 April, 2017

Exercise 1.

Select an online database that involves a weighted undirected graph of at least 100 vertices.
a. Describe the database and the network involved.
b. Create the weighted graph, specifically the weighted matrix W. Save it into a text file, WeightData.txt with the following format:

First line: n
Second line: W11 W12 ... W1n
Third line: W21 W22 ... W2n
Last line (the n+1st): Wn1 Wn2 ... Wnn
In other words: the first line includes the number of vertices n; the second line contains n floats, the first row of W; the other lines contain the other rows of W; the last line of the file includes the last row of W.

Exercise 2.

Consider the weight matrix W given in the datafile W.txt The weightes have been computed using the exponential formula $W_{i, j}=e^{-\left\|y_{i}-y_{j}\right\|^{2}}$. In this problem you need to estimate the appropriate dimension d for an exact embedding of this data set. Write a (Matlab) code that performs the following tasks:
a. Loads the matrix W;
b. Computes the matrix of pairwise distances $S=\left(S_{i, j}\right)_{1 \leq i, j \leq n}$ based on the exponential model indicated above.
c. Compute the Gramm matrix of the centered set of points, G.
d. Using the SVD decomposition of G find the set of singular values (eigenvalues) and determine the minimal isometric embedding of S.
e. Compute the coordinates of a set of n vectors $y_{1}, y_{2}, \ldots, y_{n}$ so that $\sum_{k=1}^{n} y_{k}=0$ and $\left\|y_{i}-y_{j}\right\|^{2}=S_{i, j}, 1 \leq i, j \leq n$.
f. Visualize the n points by projecting onto the space spanned by the first two coordinates, i.e. plot the 2-D points $\left(y_{1,1}, y_{1,2}\right),\left(y_{2,1}, y_{2,2}\right), \ldots,\left(y_{n, 1}, y_{n, 2}\right)$.

