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Portfolio Models. Covariance Matrix

Introduction. Suppose that we are considering the return rate histories
{ri(d)}Dd=1 for assets i = 1, · · · , N over a period of D trading days and
assign day d a weight w(d) > 0 such that the weights {w(d)}Dd=1 satisfy

D∑
d=1

w(d) = 1 .

Then the return rate means and covariances are given by

mi =
D∑
d=1

w(d) ri(d) ,

vij =
D∑
d=1

w(d)
(
ri(d)−mi

)(
rj(d)−mj

)
.



The return rate history can be expressed as {r(d)}Dd=1 where

r(d) =

r1(d)...
rN(d)

 .

Then the N -vector of return rate means m and the N×N -matrix of return
rate covariances V can be expressed as

m =

m1...
mN

 =
D∑
d=1

w(d) r(d) ,

V =

v11 · · · v1N... . . . ...
vN1 · · · vNN

 =
D∑
d=1

w(d)
(
r(d)−m

) (
r(d)−m

)T
.

Here we give some properties of V that will be used to extract statistical
information from it.



Symmetry and Definiteness. The most important properties of V are
that it is always symmetric and that it is almost always positive definite.
These properties are taught in elementary linear algebra courses, but are
so important that we review them here.

Definition 1. A real N×N -matrix A is said to be symmetric if AT = A. It
is said to be nonnegative definite if

xTAx ≥ 0 for every x ∈ RN .
It is said to be positive definite if

xTAx > 0 for every nonzero x ∈ RN .

Remarks. Clearly, every positive definite matrix is nonnegative definite. A
nonnegative matrix is positive definite if and only if

xTAx = 0 =⇒ x = 0 . (1)



Fact 1. The covariance matrix V is symmetric.

Proof. Exercise.

Fact 2. The covariance matrix V is nonegative definite.

Proof. Let x ∈ RN be arbitrary. Then

xTVx = xT

 D∑
d=1

w(d)
(
r(d)−m

) (
r(d)−m

)Tx

=
D∑
d=1

w(d)xT
(
r(d)−m

) (
r(d)−m

)T
x

=
D∑
d=1

w(d)
((

r(d)−m
)T

x
)2
≥ 0 .



Fact 3. The covariance matrix V is positive definite if and only if the vectors
{r(d)−m}Dd=1 span RN .

Proof. Because w(d) > 0, the calculation in the previous proof shows that
xTVx = 0 if and only if(

r(d)−m
)T

x = 0 for every d = 1, · · · , D . (2)

First, suppose that V is not positive definite. Then by (1) there exists an
x ∈ RN such that xTVx = 0 and x 6= 0. This implies by (2) that the
vectors {r(d) − m}Dd=1 lie in the hyperplane orthogonal (normal) to x.
Therefore the vectors {r(d)−m}Dd=1 do not span RN .

Conversely, suppose that the vectors {r(d) − m}Dd=1 do not span RN .
Then there must be a nonzero vector x that is orthogonal to their span.
This implies that x satisfies (2), whereby xTVx = 0. Therefore V is not
positive definite by (1). �



Remark. The set of vectors {r(d)−m}Dd=1 can span RN only if D ≥ N .
Therefore we require that D ≥ N .

Remark. In practice D will be much larger than N . In the homework and
projects for this course usually N ≤ 10 while D ≥ 42 (often D = 252).
When D is so much greater than N the covariance matrix V will almost
always be positive definite.

Remark. If {r(d) − m}Dd=1 spans RN then {r(d)}Dd=1 also spans RN .
However, the converse need not hold. A counterexample for N = 2 and
any D ≥ 2 can be constructed as follows. Let {m,n} span R2. Let
r(d) = m+ h(d)n where h(d) 6= 0 and

D∑
d=1

w(d)h(d) = 0 .

Then {r(d)}Dd=1 spans R2 while {r(d)−m}Dd=1 does not span R2.



Eigenpairs and Diagonalization. Let us recall from linear algebra that an
eigenpair (λ,q) of a real N×N matrix A is a scalar λ (possibly complex)
and a nonzero vector q (possibly with complex entries) such that

Aq = λq . (3)

An eigenpair is called a real eigenpair when λ and every entry of q is real.

An important fact from linear algebra is that if A is symmetric then it has N
real eigenpairs

(λ1,q1) , (λ2,q2) , · · · (λN ,qN) , (4)

such that the eigenvectors {qi}Ni=1 are an orthonormal set. This means
that they satisfy the orthonormality conditions

qTi qj = δij . (5)



Because the {qi}Ni=1 satisfy the orthonormality conditions (5), they form
an orthonormal basis of RN . Every x ∈ RN can be expanded as

x = q1 q
T
1x+ q2 q

T
2x+ · · ·+ qN qTNx . (6)

The numbers {qTi x}
N
i=1 are called the coordinates of x for the orthonormal

basis {qi}Ni=1. The square of the Euclidean norm of x is given by

‖x‖2 = xTx =
(
qT1x

)2
+
(
qT2x

)2
+ · · ·+

(
qTNx

)2
. (7)

Because the {qi}Ni=1 are eigenvectors of A, we see from (6) that

Ax = Aq1 q
T
1x+Aq2 q

T
2x+ · · ·+AqN qTNx

= λ1q1 q
T
1x+ λ2q2 q

T
2x+ · · ·+ λNqN qTNx .

(8)

Hence, the {λiqTi x}
N
i=1 are the coordinates of Ax for the orthonormal

basis {qi}Ni=1. Therefore by (7) we have

‖Ax‖2 = λ2
1

(
qT1x

)2
+ λ2

2

(
qT2x

)2
+ · · ·+ λ2

N

(
qTNx

)2
. (9)



Moreover, A can be expressed in the factored form A = QDQT where D

and Q are the real N×N matrices constructed from the eigenpairs (4) as

D =


λ1 0 · · · 0
0 λ2

. . . ...
... . . . . . . 0
0 · · · 0 λN

 , Q =
(
q1 q2 · · · qN

)
.

Because the matrix D is a diagonal matrix, this factorization of A is called
diagonalization. The orthonormality conditions (5) satisfied by the vectors
{qi}Ni=1 imply that Q is an orthogonal matrix. This means that Q satisfies

QTQ = I = QQT .

The relation QTQ = I is a recasting of the orthonormality conditions (5).
The relation I = QQT is equivalent to x = QQTx, which is a recasting of
expansion (6). These relations show that Q and QT are inverses of each
other — i.e. that Q−1 = QT and that Q−T = Q.



Other important facts from linear algebra are that if A is a real symmetric
matrix then:

• it is nonnegative definite if and only if all its eigenvalues are nonnegative;

• it is positive definite if and only if all its eigenvalues are positive.

Proof. The (=⇒) directions of these characterizations follow from the fact
that if (λ,q) is an eigenpair of A that is normalized so that qTq = 1 then

λ = λqTq = qT(λq) = qT(Aq) = qTAq .



The (⇐=) directions of these characterizations use the full power of the
orthonormality conditions (5) as embodied by expansion (8),

Ax = λ1q1 q
T
1x+ λ2q2 q

T
2x+ · · ·+ λNqN qTNx .

By taking the scalar product of this expansion with x we obtain

xTAx = λ1
(
qT1x

)2
+ λ2

(
qT2x

)2
+ · · ·+ λN

(
qTNx

)2
.

It is thereby clear that:

• if λi ≥ 0 for every i = 1, · · · , N then A is nonnegative definite;

• if λi > 0 for every i = 1, · · · , N then A is positive definite.

This proves the (⇐=) directions of the characterizations. �



Solving Linear Algebraic Systems. In order to compute the frontier
Markowitz portfolios when V is positive definite, we must solve the linear
algebraic systems

Vy = 1 , Vz = m .

In principle this task can be done with the Matlab command backslash.
However, in practice things may not be so simple because the matrix V can
be ill-conditioned. This concept is usually presented in numerical analysis
courses. Here we review it.

Consider an N×N real linear algebraic system in the form

Ax = b , where A is symmetric and positive definite . (10)

We say that A is ill-conditioned for a given numerical method for solving
system (10) when small changes in b can lead to significant changes in
the solution x.



The conditioning of the symmetric, positive definite matrix A is measured
by its so-called condition number, which is defined as

κ(A) =
λmax(A)

λmin(A)
, (11)

where

λmax(A) = max
{
λ : λ is an eigenvalue of A

}
,

λmin(A) = min
{
λ : λ is an eigenvalue of A

}
.

(12)

Notice that κ(A) ≥ 1. Notice too that κ(A) = 1 if and only if A is a posi-
tive multiple of I. As κ(A) increases, A becomes less well-conditioned.

The condition number arises when considering how small errors in b can
lead to errors in the solution x of system (10). Let x and x+ x̃ solve

Ax = b , A(x+ x̃) = b+ b̃ .

Here x̃ is the error in the solution of system due to the error b̃ in the forcing.



We want to bound the relative error of the solution, ‖x̃‖/‖x‖, in terms of
the relative error of the forcing, ‖b̃‖/‖b‖. By linearity we have

Ax = b , Ax̃ = b̃ .

We see from (9) and from definitions (12) that

‖b‖ = ‖Ax‖ ≤ λmax(A)‖x‖ , ‖b̃‖ = ‖Ax̃‖ ≥ λmin(A)‖x̃‖ .

These inequalities imply that

‖x̃‖
‖x‖
≤
λmax(A)

λmin(A)

‖b̃‖
‖b‖

= κ(A)
‖b̃‖
‖b‖

.

Therefore κ(A) gives an upper bound on the factor by which relative errors
can increase when solving system (10) numerically.

Many numerical methods for solving such a system are associated with
some factorization of the matrix A.



For example, consider the diagonalization A = QDQT, where Q is an
orthogonal matrix and D is a diagonal matrix with positive diagonal entries.
Because Q is orthogonal we have Q−1 = QT and Q−T = Q , whereby

A−1 =
(
QDQT

)−1
= Q−TD−1Q−1 = QD−1QT .

This factorization suggests solving system (10) by the recipe

c = QTb , Dy = c , x = Qy . (13)

The difficulty arises because computers perform approximate arithmetic,
which means that the solutions to these systems are approximate. Small
errors in c can create large errors in y, which will lead to large errors in x.
To see why, suppose that

D =


λ1 0 · · · 0
0 λ2

. . . ...
... . . . . . . 0
0 · · · 0 λN

 , where λ1 ≥ λ2 ≥ · · · ≥ λN > 0 .



Suppose that the result of the calculation QTb is c + c̃ where c̃ is much
smaller than c. Then the result of solving Dy = c with c+ c̃ replacing c is
y+ ỹ where

y =
(
y1 y2 · · · yN

)T
= D−1c =

( c1
λ1

c2
λ2
· · ·

cN
λN

)T
,

ỹ =
(
ỹ1 ỹ2 · · · ỹN

)T
≈ D−1c̃ =

(
c̃1
λ1

c̃2
λ2
· · ·

c̃N
λN

)T
.

If c̃1 and c̃N are comparable in size and λ1 � λN then ỹN will be much
larger than ỹ1 by the ratio λ1/λN . When this ratio is large enough then
ỹN ≈ c̃N/λN will be greater than y1 = c1/λ1 and maybe greater than
other entries of the exact solution y.



Because the result of x = Qy with y+ ỹ replacing y is x+ x̃ where

x+ x̃ ≈ Q(y+ ỹ) = x+Qỹ ,

the vector ỹ will taint the exact solution because some entries of ỹ are
larger than some entries of y and multiplication by Q generally will mix the
entries of y+ ỹ.



Simple Example Considered for Large N . Consider the family of real
N×N matrices Vc given by

Vc =


1 c · · · c
c 1 . . . ...
... . . . . . . c
c · · · c 1

 = (1− c)I+ c11T ,

for some − 1
N−1 < c < 1. Notice 11T is the N×N matrix with every entry

equal to 1. It is clear that each Vc is symmetric.

Notice that 1 is an eigenvector of Vc with eigenvalue 1+ (N − 1)c.

Notice that every vector q that satisfies 1Tq = 0 is an eigenvector of Vc

with eigenvalue 1−c. Therefore the eigenvalue 1−c has multiplicityN−1.

Because − 1
N−1 < c < 1, both of these eigenvalues are positive. Hence,

Vc is positive definite.



If c ∈ (0,1) then 1+ (N − 1)c > 1− c > 0, so that

λmax(Vc) = 1+ (N − 1)c , λmin(Vc) = 1− c .

Hence, the condition number of Vc is

κ(Vc) =
λmax(Vc)

λmin(Vc)
=

1+ (N − 1)c

1− c
.

Notice that κ(Vc) grows linearly in N as N increases for fixed c.

Remark. The matrix Vc is the covariance matrix for N risky assets with
identical variances equal to 1 and with identical covariances equal to c. Be-
cause the variances are all equal to 1 the matrix Vc is also the correlation
matrix for these assets.



Conclusion. An important take-away message from this lecture is that
even when V is symmetric and positive definite, it can be ill-conditioned
— that is, it can have a large condition number. This becomes more likely
for larger N . When this happens care must be taken to avoid inaccurate
solutions of

Vy = 1 , Vz = m .

We will do this by decomposing V into the sum of a low rank matrix plus a
well-conditioned matrix. We will show how this is done in a future lecture.
We will also give a statistical interpretation of ill-conditioning.


