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Stochastic Models 1. Independent, Identically-Distributed Models

Investors have long followed the old adage “don’t put all your eggs in one
basket” by holding diversified portfolios. However, before MPT the value of
diversification had not been quantified. Key aspects of MPT are:

1. it uses the return mean as a proxy for reward;

2. it uses volatility as a proxy for risk;

3. it analyzes Markowitz portfolios;

4. it shows diversification reduces volatility through covariances;

5. it identifies the efficient frontier as the place to be.

The orignial form of MPT did not give guidance to investors about where to
be on the efficient frontier. We will now begin to build stochasitc models that
can be used in conjunction with the original MPT to address this question.
By doing so, we will see that maximizing the return mean is not the best
strategy for maximizing your reward.



IID Models for an Asset. We begin by building models of one risky asset
with a share price history {s(d)}Dd=0. Let {r(d)}Dd=1 be the associated
return history. Because each s(d) is positive, each r(d) lies in the inter-
val (−1,∞). An independent, identically-distributed (IID) model for this
history simply independently draws D random numbers {R(d)}Dd=1 from
(−1,∞) in accord with a fixed probability density q(R) over (−1,∞).
This means that q(R) is a nonnegative integrable function such that∫ ∞

−1
q(R) dR = 1 ,

and that the probability that each R(d) takes a value inside any interval
[R1, R2] ⊂ (−1,∞) is given by

Pr
{
R(d) ∈ [R1, R2]

}
=
∫ R2

R1

q(R) dR .

Here capitol letters R(d) denote random numbers drawn from (−1,∞) in
accord with the probability density q(R) rather than real return data.



Because the random numbers {R(d)}Dd=1 are drawn from (−1,∞) in ac-
cord with the probability density q(R) independent of each other, there is
no correlation of R(d) with R(d′) when d 6= d′. In particular, if we plot
the points {(R(d), R(d + c))}D−cd=1 in the rr′-plane for any c > 0 they will
be distributed in accord with the probability density q(r)q(r′). Therefore if
the return history {r(d)}Dd=1 is mimiced by such a model then the points
{(r(d), r(d + c))}D−cd=1 plotted in the rr′-plane should appear to be dis-
tributed in a way consistant with the probability density q(r)q(r′). Such
plots are called scatter plots.

In general a scatter plot will not show independence when c is small. This
is because the behavior of an asset on any given trading day generally cor-
relates with its behavior on the previous trading day. However, if a scatter
plot shows independence for some c that is small compared to D the an
IID model might still be good. Such a time c is called the correlation time.



Because the random numbers {R(d)}Dd=1 are each drawn from (−1,∞)

in accord with the same probability density q(R), if we plot the points
{(d,R(d))}Dd=1 in the dr-plane they will usually be distributed in a way that
looks uniform in d. Therefore if the return history {r(d)}Dd=1 is mimiced by
such a model then the points {(d, r(d))}Dd=1 plotted in the dr-plane should
appear to be distributed in a way that is unifrom in d.

Exercise. Plot {(r(d), r(d + 1))}D−1
d=1 and {(d, r(d))}Dd=1 for each of

the following assets and explain which might be good candidates to be
mimiced by an IID model.

(a) Google, Microsoft, Exxon-Mobil, UPS, GE, and Ford stock in 2013;

(b) Google, Microsoft, Exxon-Mobil, UPS, GE, and Ford stock in 2008;

(c) S&P 500 and Russell 1000 and 2000 index funds in 2013;

(d) S&P 500 and Russell 1000 and 2000 index funds in 2008.



Remark. We have adopted IID models because they are simple. It is not
hard to develop more complicated stochastic models. For example, we
could use a different probability density for each day of the week rather
than treating all trading days the same way. Because there are usually
five trading days per week, Monday through Friday, such a model would
require calibrating five times as many means and covariances with one
fifth as much data. There would then be greater uncertainty associated
with the calibration. Moreover, we then have to figure out how to treat
weeks that have less than five trading days due to holidays. Perhaps just
the first and last trading days of each week should get their own probability
density, no matter on which day of the week they fall. Before increasing the
complexity of a model, you should investigate whether the costs of doing
so outweigh the benefits. Specifically, you should investigate whether or
not there is benefit in treating any one trading day of the week differently
than the others before building a more complicated models.



Remark. IID models are also the simplest models that are consistent with
the way any portfolio theory is used. Specifically, to use any portfolio theory
you must first calibrate a model from historical data. This model is then
used to predict how a set of ideal portfolios might behave in the future.
Based on these predictions one selects the ideal portfolio that optimizes
some objective. This strategy makes the implicit assumption that in the
future the market will behave statistically as it did in the past.

This assumption requires the market statistics to be stable relative to its
dynamics. But this requires future states to decorrelate from past states.
Markov models are characterized by the assumption that possible future
states are independent of past states, which maximizes this decorrelation.
IID models are the simplest Markov models. All the models discussed in
the previous remark are also Markov models. We will use only IID models.



Return Probability Densities. Once you have decided to use an IID
model for a particular asset, you might think the next goal is to pick an
appropriate probability density q(R). However, that is neither practical nor
necessary. Rather, the goal is to identify appropriate statistical information
about q(R) that sheds light on the market. Ideally this information should
be insensitive to details of q(R) within a large class of probability densities.
Statisticians call such an approach nonparametric.

The expected value of any function ψ(R) is given by

Ex
(
ψ(R)

)
=
∫ ∞
−1

ψ(R) q(R) dR ,

provided |ψ(R)| q(R) is integrable. Because we have been collecting
mean and covariance return data, we will assume that the probability den-
sities satisfy ∫ ∞

−1
R2q(R) dR <∞ .



The mean µ and variance ξ of R are then

µ = Ex(R) =
∫ ∞
−1

Rq(R) dR ,

ξ = Var(R) = Ex
(
(R− µ)2

)
=
∫ ∞
−1

(R− µ)2 q(R) dR .

However we do not know these. Rather, we must infer them from the data,
at least approximately. Given D samples {R(d)}Dd=1 that are drawn from
the density q(R), we can construct an estimator µ̂ of µ by

µ̂ =
D∑
d=1

w(d)R(d) .

This is so-called sample mean is an unbiased estimator of µ because

Ex(µ̂) =
D∑
d=1

w(d) Ex
(
R(d)

)
=

D∑
d=1

w(d)µ = µ .



We can estimate how close µ̂ is to µ by computing its variance as

Var(µ̂) = Ex
(
(µ̂− µ)2

)
= Ex

 D∑
d=1

D∑
d′=1

w(d)w(d′) (R(d)− µ) (R(d′)− µ)


=

D∑
d=1

D∑
d′=1

w(d)w(d′) Ex
(
(R(d)− µ) (R(d′)− µ)

)

=
D∑
d=1

w(d)2Ex
(
(R(d)− µ)2

)
=

D∑
d=1

w(d)2ξ = w̄ ξ .

Here the off-diagonal terms in the double sum vanish because

Ex
(
(R(d)− µ) (R(d′)− µ)

)
= 0 when d 6= d′ .

The fact Var(µ̂) = w̄ξ implies that µ̂ converges to µ like
√
w̄ as D →∞.

This rate is fastest for uniform weights, when it is 1/
√
D as D →∞.



We can construct an unbiased estimator of ξ that is proportional to the
so-called sample variance as

ξ̂ =
1

1− w̄

D∑
d=1

w(d)
(
R(d)− µ̂

)2
.

Indeed, from the calculation on the previous slide we confirm that

Ex
(
ξ̂
)

=
1

1− w̄
Ex

 D∑
d=1

w(d)
(
R(d)− µ

)2
− (µ̂− µ)2


=

D∑
d=1

w(d)

1− w̄
Ex
((
R(d)− µ

)2
)
−

Ex
(
(µ̂− µ)2

)
1− w̄

=
D∑
d=1

w(d)

1− w̄
ξ −

w̄ ξ

1− w̄
=

ξ

1− w̄
−

w̄ ξ

1− w̄
= ξ .



Growth Rate Probability Densities. Given D samples {R(d)}Dd=1 that
are drawn from the return probability density q(R), the associated simu-
lated share prices satisfy

S(d) = (1 +R(d))S(d− 1) , for d = 1, · · · , D .

If we set S(0) = s(0) then you can easily see that

S(d) =
d∏

d′=1

(
1 +R(d′)

)
s(0) .

The growth rate X(d) is related to the return R(d) by

eX(d) = 1 +R(d) .

In other words, X(d) is the growth rate that yeilds a return R(d) on trading
day d. The formula for S(d) then takes the form

S(d) = exp

 d∑
d′=1

X(d′)

 s(0) .



If the samples {R(d)}Dd=1 are drawn from a density q(R) over (−1,∞)

then the {X(d)}Dd=1 are drawn from a density p(X) over (−∞,∞) where
p(X) dX = q(R) dR with X and R related by

X = log(1 +R) , R = eX − 1 .

More explicitly, the densities p(X) and q(R) are related by

p(X) = q
(
eX − 1

)
eX , q(R) =

p(log(1 +R))

1 +R
.

Because our models will involve means and variances, we will require that

∫ ∞
−∞

X2p(X) dX =
∫ ∞
−1

log(1 +R)2 q(R) dR <∞ ,∫ ∞
−∞

(
eX − 1

)2
p(X) dX =

∫ ∞
−1

R2q(R) dR <∞ .



The big advantage of working with p(X) rather than q(R) is the fact that

log

(
S(d)

s(0)

)
=

d∑
d′=1

X(d′) .

In other words, log(S(d)/s(0)) is a sum of an IID process. It is easy to
compute the mean and variance of this quantity in terms of those of X.

The mean γ and variance θ of X are

γ = Ex(X) =
∫ ∞
−∞

X p(X) dX ,

θ = Var(X) = Ex
(
(X − γ)2

)
=
∫ ∞
−∞

(X − γ)2 p(X) dX .

For the mean of log(S(d)/s(0)) we find that

Ex

(
log

(
S(d)

s(0)

))
=

d∑
d′=1

Ex
(
X(d′)

)
= d γ ,



For the variance of log(S(d)/s(0)) we find that

Var

(
log

(
S(d)

s(0)

))
= Ex


 d∑
d′=1

X(d′)− d γ

2


= Ex


 d∑
d′=1

(
X(d′)− γ

)2


= Ex

 d∑
d′=1

d∑
d′′=1

(
X(d′)− γ

) (
X(d′′)− γ

)
=

d∑
d′=1

Ex
((
X(d′)− γ

)2
)

= d θ .

Here the off-diagonal terms in the double sum vanish because

Ex
((
X(d′)− γ

) (
X(d′′)− γ

))
= 0 when d′′ 6= d′ .



Therefore the expected growth and variance of the IID model asset at day
d is

Ex

(
log

(
S(d)

s(0)

))
= γ d , Var

(
log

(
S(d)

s(0)

))
= θ d .

Remark. The IID model suggests that the growth rate mean γ is a good
proxy for the reward of an asset and that

√
θ is a good proxy for its risk.

However, these are not the proxies chosen by MPT when it is applied to a
portfolio consisting of one risky asset. These proxies can be approximated
by γ̂ and

√
θ̂ where γ̂ and θ̂ are the unbiased estimators of γ and θ given

by

γ̂ =
D∑
d=1

w(d)X(d) , θ̂ =
D∑
d=1

w(d)

1− w̄

(
X(d)− γ̂

)2
.



Normal Growth Rate Model. We can illustrate what is going on with the
simple IID model where p(X) is the normal or Gaussian density with mean
γ and variance θ, which is given by

p(X) =
1√
2πθ

exp

(
−

(X − γ)2

2θ

)
.

Let {X(d)}∞d=1 be a sequence of IID random variables drawn from p(X).
Let {Y (d)}∞d=1 be the sequence of random variables defined by

Y (d) =
1

d

d∑
d′=1

X(d′) for every d = 1, · · · ,∞ .

You can easily check that

Ex(Y (d)) = γ , Var(Y (d)) =
θ

d
.

You can also check that Ex(Y (d)|Y (d − 1)) = d−1
d Y (d − 1) + 1

dγ. So
the variables Y (d) are neither independent nor identically distributed.



It can be shown (the details are not given here) that Y (d) is drawn from
the normal density with mean γ and variance θ/d, which is given by

pd(Y ) =

√
d

2πθ
exp

(
−

(Y − γ)2d

2θ

)
.

Because S(d)/s(0) = ed Y (d), the mean return at day d is

Ex
(
ed Y (d)

)
=

√
d

2πθ

∫
exp

(
−

(Y − γ)2d

2θ
+ d Y

)
dY

=

√
d

2πθ

∫
exp

(
−

(Y − γ − θ)2d

2θ
+ d(γ + 1

2θ)

)
dY

= exp
(
d(γ + 1

2θ)
)
.

Because pd(Y ) becomes sharply peaked around Y = γ as d increases,
most investors will see the lower growth rate γ rather than γ + 1

2θ.



By setting d = 1 in the above formula, we see that the return mean is

µ = Ex(R) = Ex
(
eX − 1

)
= exp

(
γ + 1

2θ
)
− 1 .

Hence, µ > γ+1
2θ, with µ ≈ γ+1

2θ when (γ+1
2θ) << 1. Therefore most

investors will see a return that is below the return mean µ — far below in
volatile markets. This is because eX amplifies the tail of the normal density.
For a more realistic IID model with a density p(X) that decays more slowly
than a normal density as X → ∞, this difference can be more striking.
Said another way, most investors will not see the same return as Warren
Buffett, but his return will boost the mean.

The normal growth rate model confirms that γ is a better proxy for how well
a risky asset might perform than µ because pd(Y ) becomes more peaked
around Y = γ as d increases. We will extend this result to a general class
of IID models that are more realistic.



IID Models for Markets. We now consider a market with N risky assets.
Let {si(d)}Dd=0 be the share price history of asset i. The associated return
and growth rate histories are {ri(d)}Dd=1 and {xi(d)}Dd=1 where

ri(d) =
si(d)

si(d− 1)
− 1 , xi(d) = log

(
si(d)

si(d− 1)

)
.

Because each si(d) is positive, each ri(d) is in (−1,∞), and each xi(d)

is in (−∞,∞). Let r(d) and x(d) be the N -vectors

r(d) =

r1(d)
...

rN(d)

 , x(d) =

x1(d)
...

xN(d)

 .

The market return and growth rate histories can then be expressed simply
as {r(d)}Dd=1 and {x(d)}Dd=1 respectively.



An IID model for this market draws D random vectors {R(d)}Dd=1 from a
fixed probablity density q(R) over (−1,∞)N . Such a model is reason-
able when the points {(d, r(d))}Dd=1 are distributed uniformly in d. This is
hard to visualize when N is not small. You might think a necessary con-
dition for the entire market to have an IID model is that each asset has
an IID model. This can be visualized for each asset by plotting the points
{(d, ri(d))}Dd=1 in the dr-plane and seeing if they appear to be distributed
uniformly in d. Similar visual tests based on pairs of assets can be carried
out by plotting the points {(d, ri(d), rj(d))}Dd=1 in R3 with an interactive
3D graphics package.

Visual tests like those described above often show that funds behave more
like IID models than individual stocks or bonds. This means that portfolio
balancing strategies based on IID models might work better for portfolios
composed largely of funds. This is one reason why some investors prefer
investing in funds over investing in individual stocks and bonds.



A better lesson to be drawn from the observation in the last paragraph is
that every sufficiently diverse portfolio of assets in a market will behave
more like an IID model than many of the individual assets in that market.
In other words, IID models for a market can be used to develop portfolio
balancing strategies when the portfolios considered are sufficiently diverse,
even when the behavior of individual assets in that market may not be well
described by the model. This is another reason to prefer holding diverse,
broad-based portfolios. More importantly, this suggests that it is better to
apply visual tests like those described above to representative portfolios
rather than to individual assets in the market.

Remark. Such visual tests can only warn you when IID models might not
be appropriate for describing the data. There are also statistical tests that
can play this role. There is no visual or statistical test that can insure the
validity of using an IID model for a market. However, due to their simplicity,
IID models are often used unless there is a good reason not to use them.



After you have decided to use an IID model for the market, you must gather
statistical information about the return probability density q(R). The mean
vector µ and covariance matrix Ξ of R are given by

µ =
∫

R q(R) dR , Ξ =
∫

(R− µ)(R− µ)Tq(R) dR .

Given any sample {R(d)}Dd=1 drawn from q(R), these have the unbiased
estimators

µ̂ =
D∑
d=1

w(d) R(d) , Ξ̂ =
D∑
d=1

w(d)

1− w̄
(R(d)− µ̂) (R(d)− µ̂)T .

If we assume that such a sample is given by the return data {r(d)}Dd=1
then these estimators are given in terms of the vector m and matrix V by

µ̂ = m , Ξ̂ = V .



IID Models for Markowitz Portfolios. Recall that the value of a portfolio
that holds a risk-free balance brf(d) with return µrf and ni(d) shares of
asset i during trading day d is

π(d) = brf(d)
(
1 + µrf

)
+

N∑
i=1

ni(d)si(d) .

We will assume that π(d) > 0 for every d. Then the return r(d) and growth
rate x(d) for this portfolio on trading day d are given by

r(d) =
π(d)

π(d− 1)
− 1 , x(d) = log

(
π(d)

π(d− 1)

)
.

Recall that the return r(d) for the Markowitz portfolio with allocation f can
be expressed in terms of the vector r(d) as

r(d) = (1− 1Tf)µrf + fTr(d) .



This implies that if the underlying market has an IID model with return
probability density q(R) then the Markowitz portfolio with allocation f has
the IID model with return probability density qf(R) given by

qf(R) =
∫
δ
(
R− (1− 1Tf)µrf −RTf

)
q(R) dR .

Here δ( · ) denotes the Dirac delta distribution, which can be defined by
the property that for every sufficiently nice function ψ(R)∫

ψ(R) δ
(
R− (1− 1Tf)µrf −RTf

)
dR = ψ

(
(1− 1Tf)µrf + RTf

)
.

Hence, for every sufficiently nice function ψ(R) we have the formula

Ex
(
ψ(R)

)
=
∫
ψ(R) qf(R) dR

=
∫∫

ψ(R) δ
(
R− (1− 1Tf)µrf −RTf

)
q(R) dR dR

=
∫
ψ
(
(1− 1Tf)µrf + RTf

)
q(R) dR .



We can thereby compute the mean µ and variance ξ of qf(R) as

µ = Ex(R) =
∫ (

(1− 1Tf)µrf + RTf
)
q(R) dR

= (1− 1Tf)µrf

∫
q(R) dR +

(∫
R q(R) dR

)T
f

= (1− 1Tf)µrf + µTf ,

ξ = Ex
(
(R− µ)2

)
=
∫ (

(1− 1Tf)µrf + RTf − µ
)2
q(R) dR

=
∫ (

RTf − µTf
)2
q(R) dR =

∫
fT(R− µ)(R− µ)Tf q(R) dR

= fT
(∫

(R− µ)(R− µ)Tq(R) dR
)

f = fTΞ f ,

where we have used the facts that∫
q(R) dR = 1 ,

∫
R q(R) dR = µ ,∫

(R− µ)(R− µ)Tq(R) dR = Ξ .



If we assume that the return history {r(d)}Dd=1 is an IID sample drawn
from a probability density q(R) then unbiased estimators of the associated
mean µ and variance Ξ are given in terms of m and V by

µ̂ = m , Ξ̂ = V .

Then the Markowitz portfolio with allocation f has the return history {r(d)}Dd=1
with

r(d) = (1− 1Tf)µrf + fTr(d) .

Moreover, this history is an IID sample drawn from a probability density
qf(R) and the formulas on the previous page show that the mean µ and
variance ξ of qf(R) have the unbiased estimators

µ̂ = µrf(1− 1Tf) + mTf , ξ̂ = fTVf .



Exercise. Use the unbiased estimators µ̂, ξ̂, γ̂, and θ̂ given by

µ̂ =
1

D

D∑
d=1

r(d) , ξ̂ =
1

D − 1

D∑
d=1

(
r(d)− µ̂

)2
,

γ̂ =
1

D

D∑
d=1

x(d) , θ̂ =
1

D − 1

D∑
d=1

(
x(d)− γ̂

)2
,

to estimate µ, ξ, γ, and θ given the share price history {s(d)}Dd=0 with

r(d) =
s(d)

s(d− 1)
− 1 , x(d) = log

(
s(d)

s(d− 1)

)
,

for each of the following assets. How do µ̂ and γ̂ compare? ξ̂ and θ̂?

(a) Google, Microsoft, Exxon-Mobil, UPS, GE, and Ford stock in 2009;

(b) Google, Microsoft, Exxon-Mobil, UPS, GE, and Ford stock in 2007;

(c) S&P 500 and Russell 1000 and 2000 index funds in 2009;

(d) S&P 500 and Russell 1000 and 2000 index funds in 2007.


