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Leveraged Portfolios

Introduction. Leveraged portfolios are ones that take short positions.
Short positions can offer the promise of great reward, but come with the
potential for greater losses. They are favored by quantitative hedge funds,
notable examples of which are the Medallion, RIEF, and RIDA funds run by
Renaissance Technologies. They were also favored by major investment
banks during the first decade of the 21st century, and played a major role
in bringing about the subsequent great recession. They had a similar role
in bringing about the great depression seventy eight years earlier. In fact,
they have played a role in every major market bubble crash, such as the
dot-com crash of 2000.

Because leveraged portfolios can lead to systemic risk, they are something
about which every investor should have some understanding. We will try
to gain such an understanding by building a simple model of leveraged
Markowitz portfolios.



Limited Leverage Portfolios. The class Ω of solvent Markowitz portfolios
is unrealistic because it allows an investor to take short positions without
much collateral. In practice such positions are restricted by credit limits.

If we assume that in each case the lender is the broker and the collateral
is part of the portfolio then a simple model for credit limits is to constrain
the total short position of the portfolio to be at most a positive multiple ` of
the portfolio value. The value of ` is called the leverage limit of the portfolio
and will depend upon market conditions, but brokers will often allow ` > 1

and seldom allow ` > 5.

Just because a broker allows a particular value of ` does not mean it is in
the best interest of an investor to build a portfolio with that value of `. We
will use this model to understand what values of ` might not be prudent.
This understanding will give us a measure of when markets are stressed.



In order to derive constraints on the allocations based upon this simple
model, we decompose any f into its long and short positions as

f = f+ − f− , (1)

where f±i , the ith entry of f±, is given by

f+
i = max{fi , 0} , f−i = max{−fi , 0} .

This is the so-called long-short decomposition of f . The vectors f+ and f−
in this decomposition are characterized by

f+ ≥ 0 , f− ≥ 0 , fT+f− = 0 .

The constraint that the multiple of the portfolio value held in short positions
is bounded by a leverage limit ` can be expressed as

1Tf− ≤ ` . (2)



It follows from the constraint 1Tf = 1 and decompostion (1) that

1 = 1Tf = 1Tf+ − 1Tf− .

We also have

|f | = 1Tf+ + 1Tf− ,

where |f | denotes the `1-norm of f , which is defined by

|f | =
N∑
i=1

|fi| .

Notice that 1 = |1Tf | ≤ |f |. By first adding and subtracting the top relation
above from the second, and then dividing by 2, we obtain

1Tf+ =
|f |+ 1

2
, 1Tf− =

|f | − 1

2
. (3)

These are the multiples of the portfolio value that are held in long and short
positions respectively. Notice that 1Tf+ ≥ 1 and that 1Tf− ≥ 0.



Constraint (2) that bounds the multiple of the portfolio value held in short
positions by ` thereby becomes

|f | − 1

2
= 1Tf− ≤ ` .

We thereby see that if 1Tf = 1 then

1Tf− ≤ ` ⇐⇒ |f | ≤ 1 + 2` .

Therefore the set of allocations for Markowitz portfolios with a leverage limit
` ∈ [0,∞) is

Π` =
{
f ∈ RN : 1Tf = 1 , |f | ≤ 1 + 2`

}
. (4)

It is clear that if `, `′ ∈ [0,∞) then

` ≤ `′ =⇒ Π` ⊂ Π`′ .



Recall that the set of allocations for long Markowitz portfolios is

Λ =
{
f ∈ RN : 1Tf = 1 , f ≥ 0

}
. (5)

We now show that the limited leverage Markowitz portfolios with leverage
limit ` = 0 are exactly the long Markowitz portfolios.

Fact 1. We have Π0 = Λ.

Proof. Let f ∈ Π0. Let f = f+ − f− be the long-short decomposition of
f given by (1). Because f− ≥ 0 while 1Tf− ≤ ` = 0, we conclude that
f− = 0. Therefore f ∈ Λ.

Conversely, if f ∈ Λ then f− = 0, so 1Tf− = 0, whereby f ∈ Π0. �



Unlimited Leverage Portfolios. If we take the union of the sets Π` over
` ∈ [0,∞) then we obtain the set

Π∞ =
{
f ∈ RN : 1Tf = 1

}
. (6)

It is clear from (4) that if ` ∈ [0,∞) then Π` ⊂ Π∞.

The set Π∞ is the set of allocations for all Markowitz portfolios. It contains
the set Ω of allocations for solvent Markowitz portfolios. It is unrealistic
because it allows investors to take short positions with almost no collateral.
However, it has the virtue that its only constraint is 1Tf = 1, which is an
equality constraint. This fact makes it easier to use in many settings than
the sets Π` with ` ∈ [0,∞), which involve inequality constraints. By using
Π∞ we are often able to derive analytical expressions that offer insight.
This will be illustrated in the next lecture.



Solvent Leveraged Portfolios. Recall that for a given price ratio history
{ρ(d)}Dd=1 the set of allocations for solvent Markowitz portfolios is

Ω =
{
f ∈ RN : 1Tf = 1 , 0 < ρ(d)Tf ∀d

}
, (7a)

the set of allocations for Markowitz portfolios with value ratios bounded
below by ρ ∈ (0,∞) is

Ωρ =
{
f ∈ RN : 1Tf = 1 , ρ ≤ ρ(d)Tf ∀d

}
, (7b)

and the set of allocations for Markowitz portfolios with value ratios that are
contained within [ρ, ρ] ⊂ (0,∞) is

Ω[ρ,ρ] =
{
f ∈ RN : 1Tf = 1 , ρ ≤ ρ(d)Tf ≤ ρ ∀d

}
. (7c)

Here we will give bounds on the leverage limit ` that will characterize when
Π` ⊂ Ω[ρ,ρ], when Π` ⊂ Ωρ, and when Π` ⊂ Ω.



These bounds will be express in terms of the quantities ρmn(d) and ρmx(d)
defined by

ρmn(d) = min
{
ρi(d) : i = 1, · · · , N

}
,

ρmx(d) = max
{
ρi(d) : i = 1, · · · , N

}
.

(8)

These are the price ratios of the worst and the best performing asset on
trading day d. We expect that 0 < ρmn(d) < ρmx(d) on every trading day.

Remark 1. On most trading days a large, well-balanced portfolio will have
an asset that decreases in value and another asset that increases in value.
For such days we will have

0 < ρmn(d) < 1 < ρmx(d) .

For small portfolios it is not uncommon for 0 < ρmn(d) < ρmx(d) < 1 on
days when the whole market goes down, or for 1 < ρmn(d) < ρmx(d) on
days when the whole market goes up.



Remark 2. Recall from the last lecture that Λ ⊂ Ω[ρmn,ρmx] where

ρmn = min
d

{
ρmn(d)

}
, ρmx = max

d

{
ρmx(d)

}
, (9)

and that Ω[ρmn,ρmx] is the smallest such set containing Λ. From Fact 1
and definitions (4) and (6) we see that Λ = Π0 ⊂ Π` for every ` ∈ [0,∞],
whereby we conclude that:

• a necessary condition for Π` ⊂ Ω[ρ,ρ] is [ρ, ρ] ⊃ [ρmn, ρmx];

• a necessary condition for Π` ⊂ Ωρ is ρ ≤ ρmn.

We are now ready to state our characterizations.



Fact 2. Let ` ∈ [0,∞) and [ρ, ρ] ⊂ (0,∞). Then Π` ⊂ Ω[ρ,ρ] if and only
if [ρmn, ρmx] ⊂ [ρ, ρ] and

` ≤ min
d

{
ρmn(d)− ρ

ρmx(d)− ρmn(d)
,

ρ− ρmx(d)

ρmx(d)− ρmn(d)

}
. (10a)

Fact 3. Let ` ∈ [0,∞) and ρ ∈ (0,∞). Then Π` ⊂ Ωρ if and only if
ρ ≤ ρmn and

` ≤ min
d

{
ρmn(d)− ρ

ρmx(d)− ρmn(d)

}
. (10b)

Fact 4. Let ` ∈ [0,∞). Then Π` ⊂ Ω if and only if

` < min
d

{
ρmn(d)

ρmx(d)− ρmn(d)

}
. (10c)



Proofs. We see from the definitions of ρmn(d) and ρmx(d) given in (8)
that ρ(d) satisfies the entrywise inequalities

ρmn(d) 1 ≤ ρ(d) ≤ ρmx(d) 1 .

These inequalities will be equalities for those entries corresponding to the
worst and best performing assets respectively.

Let f = f+−f− be the long-short decomposition of f given by (1). Because
f± ≥ 0, the above entrywise inequalities yield the bounds

ρmn(d) 1Tf± ≤ ρ(d)Tf± ≤ ρmx(d) 1Tf± . (11)

These inequalities will be equalities when the only nonneutral positions are
held in the worst and best performing assets respectively.



We see from the bounds (11), the formulas (3) for 1Tf±, and definition (4)
of Π` that for every f ∈ Π` a lower bound for ρ(d)Tf is

ρ(d)Tf = ρ(d)Tf+ − ρ(d)Tf−

≥ ρmn(d) 1Tf+ − ρmx(d) 1Tf−

= ρmn(d)
|f |+ 1

2
− ρmx(d)

|f | − 1

2

=
ρmx(d) + ρmn(d)

2
−
ρmx(d)− ρmn(d)

2
|f |

≥
ρmx(d) + ρmn(d)

2
−
ρmx(d)− ρmn(d)

2
(1 + 2`)

= ρmn(d)−
(
ρmx(d)− ρmn(d)

)
` .

This lower bound will be greater than or equal to ρ if and only if

` ≤
ρmn(d)− ρ

ρmx(d)− ρmn(d)
. (12a)



We see from the bounds (11), the formulas (3) for 1Tf±, and definition (4)
of Π` that for every f ∈ Π` an upper bound for ρ(d)Tf is

ρ(d)Tf = ρ(d)Tf+ − ρ(d)Tf−

≤ ρmx(d)1Tf+ − ρmn(d)1Tf−

= ρmx(d)
|f |+ 1

2
− ρmn(d)

|f | − 1

2

=
ρmx(d)− ρmn(d)

2
|f | −

ρmx(d) + ρmn(d)

2

≤
ρmx(d)− ρmn(d)

2
(1 + 2`)−

ρmx(d) + ρmn(d)

2
= ρmx(d) +

(
ρmx(d)− ρmn(d)

)
` .

This upper bound will be less than or equal to ρ if and only if

` ≤
ρ− ρmx(d)

ρmx(d)− ρmn(d)
. (12b)



First assume that [ρ, ρ] ⊃ [ρmn, ρmx] and that ` satisfies bound (10a).
Then ` satisfies the bounds (12a) and (12b) for every d = 1, · · · , D.
Therefore Π` ⊂ Ω[ρ,ρ].

Now assume that Π` ⊂ Ω[ρ,ρ]. Remark 2 shows that [ρ, ρ] ⊃ [ρmn, ρmx].
If ` does not satisfy bound (10a) then for some d either

` >
ρmn(d)− ρ

ρmx(d)− ρmn(d)
or ` >

ρ− ρmx(d)

ρmx(d)− ρmn(d)
,

then we can construct an f ∈ Π` such that either ρ(d)Tf < ρ in the
first case by being short in a best performing asset and long in a worst
performing asset, or ρ < ρ(d)Tf in the second case by being long in a
best performing asset and short in a worst performing asset.

Therefore we have proved Fact 2.



Next assume that ρ ≤ ρmn and ` satisfies bound (10b). Then ` satisfies
the bound (12a) for every d = 1, · · · , D with ρ = ρ. Therefore Π` ⊂ Ωρ.

Now assume that Π` ⊂ Ωρ. Remark 2 shows that ρ ≤ ρmn. If ` does not
satisfy bound (10b) then for some d

` >
ρmn(d)− ρ

ρmx(d)− ρmn(d)
,

then we can construct an f ∈ Π` such that ρ(d)Tf < ρ by being short in a
best performing asset and long in a worst performing asset.

Therefore we have proved Fact 3.

Finally, because Ω is the union of all the Ωρ, it follows from Fact 3 that
Π` ⊂ Ω for some ` ≥ 0 if and only if ` satisfy bound (10c).

Therefore we have proved Fact 4. �



Leverage Limit Bound. We can restate Fact 4 as every portfolio in Π` is
solvent if and only if ` ∈ [0, `sol), where by (10c) the leverage limit upper
bound `sol is

`sol = min
d

{
ρmn(d)

ρmx(d)− ρmn(d)

}
=

1

max
d

{
ρmx(d)

ρmn(d)

}
− 1

. (13)

It depends upon the ratios ρmx(d)/ρmn(d) over the history considered.
These ratios can be close to 1 on days when the entire market moves up
or down by a substantial amount. They can be largest on days when the
market does not make a major move.

One use of this bound is to monitor stress in the market. The lower `sol,
the more stress the market is under. Another use is to determine a safe
leverage limit for your own portfolio. It is wise to consider a long history
when computing the bound for this purpose.



When ` ∈ [0, `sol) we can identify an interval [ρ, ρ] such that Π` ⊂ Ω[ρ,ρ].
This fact can be used to select ` so that Π` falls within a target Ω[ρ,ρ].

Fact 5. If ` ∈ [0, `sol) then Π` ⊂ Ω[ρ,ρ] where

ρ =

(
1−

`

`sol

)
ρmn , ρ =

(
1 +

`

1 + `sol

)
ρmx . (14)

Moreover, because Ω[ρ,ρ] ⊂ Ωρ, we have Π` ⊂ Ωρ.

Proof. Let ` ∈ [0, `sol). Let ρ and ρ be given by (14). Then

min
d

{
ρmn(d)− ρ

ρmx(d)− ρmn(d)

}
≥ min

d


ρmn(d)−

(
1− `

`sol

)
ρmn(d)

ρmx(d)− ρmn(d)


=

`

`sol
min
d

{
ρmn(d)

ρmx(d)− ρmn(d)

}
= ` .



Similarly,

min
d

{
ρ− ρmx(d)

ρmx(d)− ρmn(d)

}
≥ min

d


(
1 + `

1+`sol

)
ρmx(d)− ρmx(d)

ρmx(d)− ρmn(d)


=

`

1 + `sol
min
d

{
ρmx(d)

ρmx(d)− ρmn(d)

}

=
`

1 + `sol

(
1 + `sol

)
= ` .

Because [ρ, ρ] ⊃ [ρmn, ρmx] and because

min
d

{
ρmn(d)− ρ

ρmx(d)− ρmn(d)
,

ρ− ρmx(d)

ρmx(d)− ρmn(d)

}
≥ ` ,

we conclude by Fact 2 that Π` ⊂ Ω[ρ,ρ]. �



Remark. Generally there is an interval [ρ, ρ] such that Π` ⊂ Ω[ρ,ρ] that
is smaller than the one given by (14). However, if ρmn(d) is close to ρmn
and ρmx(d) is close to ρmx on days when ρmx(d)/ρmn(d) is close to its
maximum then the values of ρ and ρ given by (14) will be near optimal.

Remark. It is natural to ask why an investor who maintains a long portfolio
should care about bounds on leverage limits. The answer is that bounds
on leverage limits can fall well before a market bubble collapses. During
a bubble some investors will succumb to the temptation of taking highly
leveraged positions. The most highly leveraged investors will be stressed
when bounds on leverage limits fall. They may have to shed some of their
position to cover their margins. This creates market volatility, which in turn
can drive bounds on leverage limits down further. This can go on for quite
a while before the market turns down — if it turns down. Observant long
investors can use this time move into a more conservative position. It is
wise to use short histories when computing these bounds for this purpose.


