
Assessing How Well a Model Fits the
Data

Brian Hunt
University of Maryland

AMSC/MATH 420, Spring 2015



“Best” Fit

• Given a model depending on some parameters, and
some data, we have said that certain parameter
values “best” fit the data if they minimize the error
quantified by the sum of the squares of the residuals:

E =
J∑

j=1

R2
j

• Each residual Rj is the difference between the
observed value yj (or some related value) and the
model prediction for this value.

• While E quantifies the relative quality of different fits,
the value of E is not so easy to interpret.



RMS Error

• The RMS error of a fit with residuals R1, . . . ,RJ is

RMS error =
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• Minimizing the RMS error is equivalent to minimizing
the sum-of-squares error E , but the RMS error has a
more natural interpretation.

• The RMS error has the same units as the residuals
and the data, unlike E .

• It is the root-mean-square average of the residuals,
so it is not proportional to the number of data points
like E is.



Does a parameter improve the model?

• Suppose we want to compare a model
f (t ; β1, . . . , βk , βk+1) to the model f (t ; β1, . . . , βk ,0)
with one fewer parameter.

• The best fit with the former model will always have an
error no larger than the best fit with the latter model.

• How can we tell if the improvement is enough to
make the additional parameter worth using?

• One approach is to develop a statistical model for the
errors, in order to quantify the “significance” of the
improvement.

• More simply (perhaps too simply), one can make a
value judgment that (say) a 1% improvement is not
worth the complication, but a 10% improvement is.



Does the parameter improve predictions?

• If the goal of the model is to predict data that hasn’t
yet or can’t be measured, then we can assess
whether the model with the additional parameter
makes better predictions.

• Keep in mind that the more complicated model might
make worse predictions than the simpler model.

• Thus, comparing the models’ prediction residuals is
more of a “fair fight” than comparing their residuals
for the fitted data.

• How can we assess the quality of the predictions
without waiting for new data to be available?



Training and Test Data

• A common way to assess predictive power of a model
for data taken at a sequence of times starts by
dividing the data into two time intervals.

• The data from the first time interval is called the
training data set; the data from the second time
interval is called the test data.

• Fit the model to the training data only, then see how
well the parameters that best fit the training data are
able to predict the test data.

• What proportion of the data to put in the training set
depends on how much data you have and how far
into the future you want the model to predict.



Interpreting the Results

• The RMS error for the test data, both by itself and in
comparison with the RMS error for the training data,
give some assessment of the model’s predictive
power. However, a simple comparison of training and
test RMS errors is inadequate if the two data sets
have different amounts of variability.

• Comparing the test data RMS errors for two different
models is a reasonable way to assess which makes
better predictions (for the time interval of the test
data, at least).

• Whatever conclusions you draw, they are more
convincing if tested on multiple data sets.



Model Heirarchy
• Suppose we have two models A and B. Let’s write A
≺ B if setting a certain parameter or parameters of
model B to 0 reduces model B to model A. More
colloquially, this means that the model B equations
consist of the model A equations plus some
additional term(s). For example, SI ≺ SIR.

• Writing SIg and SIRg for the SI and SIR models with
the growth/renewal term added, we also have SI ≺
SIg ≺ SIRg and SIR ≺ SIRg.

• If A ≺ B, then model B can fit any data set at least as
well as model A.

• This doesn’t necessarily mean that model B better
describes the process that generated the data than
model A does.



Comparing Models with Test/Training Data

• Suppose A ≺ B (“model B” adds an additional
parameter or parameters to “model A”).

• If model B consistently predicts test data better than
model A, this is a good argument in favor of model B.

• If model B predicts test data worse than model A,
despite fitting the training data better, then model B
may be “overfitting” the training data. But not
necessarily; model B may still have some advantage
over model A. For example, it may be worse at
extrapolation but better at interpolation (this could be
examined using test data that is interspersed in time
with training data).



Fits to first 80% of San Francisco Data
Model SI SIR SIg SIRg
N 29237 28671 58503 *
λ 0.032288 0.016684 0.035714 0.061
µ — — –0.071832 –0.078
ν — –0.74075 — 0.24
α 0.021206 0.054567 0.010270 *
rms 80% 24.015 23.168 23.234 23.173
rms 20% 14.061 35.888 69.313 63.6
rms 100% 22.826 26.212 37.319 35.2

• As on last week’s slides, β was set to 0.
• For the SIRg model, minimization does not appear to

converge; the rms error and some of the parameters
nearly stabilize, but the error keeps getting slightly
smaller as N increases well beyond reason.



Predicting Farther into the Future

• In 2013, San Francisco had 359 new HIV diagnoses
(source: http://sfaf.org/hiv-info/statistics/).

• The models we studied, using parameters fit to the
entire 1982–2001 data set, predict the following
number of diagnoses for 2013:

• SI: 3
• SIR: 16
• SIg: 219
• SIRg: 555

• The SI and SIR model severely underpredict the new
diagnoses 12 years later.

• The SIg and SIRg model both give reasonable
ballpark predictions.


