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More Sophisticated Models

• Let’s re-examine the assumptions behind our first
models and discuss how to make them more realistic.

• We assumed a fixed population size N that was
isolated from other sources of the hypothetical illness
we modeled.

• We assumed that a single number p represents the
probability of an infectious person infecting a
susceptible person on each day, for each such pair of
people.

• A more realistic model would allow p to depend on a
number of factors.



Modeling the Infection Probability p

• In real life, the infection probability p depends on the
pair of people. However, introducing an independent
probability pmn for each pair of people m and n results
in way too many parameters.

• Also, p depends on time; for example, day of week.
• Perhaps most importantly, p depends on how long

the infectious person has had the illness. Typically it
peaks a certain amount of time after infection, then
decreases to 0.

• To keep the number of parameters manageable, we
need to have a model for how p depends on these
factors.



Compartmental Models
• Many models divide the population into a relatively

small number of categories (“compartments”) and
keep track of the number of people in each
compartment.

• Our first deterministic models had two compartments:
“susceptible” and “infectuous”. We’ll call the
continuous time model (3) the SI model.

• A widely studied model is the SIR model, which
introduces a third compartment: “recovered” or
“removed”. People in this category are no longer
infectious.

• Other possible compartments can take into account
more stages in the progression of the illness, different
behavior patterns, different biological characteristics,
etc.



Fitting to Data, Revisited

• In our earlier discussion, we assumed that the
number of infectious people at a given time could be
measured. But how would we ever know this
number?

• The number of infectious people is often inferred from
data on new diagnoses of the illness. However:
• Not all people who get the illness see a doctor.
• Diagnosis may come well after a person

becomes infectious.
• Data is not always reported (e.g., to CDC)

promptly or reliably.
• A common problem in modeling is to relate the

quantities of interest to the available data.



SI Model

• The SI model we discussed before is often written

dS/dt = −pSI
dI/dt = pSI

where S is the “susceptible” population – those at risk
to become infected at a given time – and I is the
infectious population. For this model the sum S + I
remains constant over time; we called the sum N and
substituted S = N − I in the second equation.

• The resulting solution was

I(t) = NI(0)
I(0) + [N − I(0)]e−pNt



SIR Model

• The SIR model (Kermack & McKendrick, 1927) is

dS/dt = −pSI
dI/dt = pSI − rI
dR/dt = rI

where R (for “recovered” or “removed”) is the number
of people who were infected but are no longer
infectuous. In this case, I + R is the cumulative
number of people infected.

• One can add a term to the first equation representing
new arrivals to the susceptible population.

• There is no formula for the solutions.



Properties of Solution Families

• Each model’s family of solutions has some properties
that are useful for fitting parameters to data.

• A time-shifted solution is also a solution: If I(t) is a
solution, then I(t + c) is also a solution (with a
different initial condition). This is because the model
is “autonomous” – no explicit t dependence.

• A rescaled solution is also a solution: If I(t) is a
solution, then aI(bt) is a solution of the same model
with different parameters.

• Given a data set and the graph of a solution I(t), we
can try to shift and rescale the graph to fit the data.



Change of parameters for SI model solution

• We can rewrite

I(t) = N
1 + [N/I(0)− 1]e−pNt

=
N

1 + e−λ(t−δ)
= Ng(λ(t − δ))

where

λ = pN
δ = log[N/I(0)− 1]/λ

g(x) = 1/(1 + e−x).

• The function g is sometimes called the standard
logistic sigmoid function.



Interpretation of new parameters

• If we find parameters N, λ, δ that fit the data, we can
solve for the original parameters p and I(0).
However, the new parameters may be more
interesting in their own right.

• N is the total number of people who will be infected
over the outbreak, according to the model.

• δ is the time at which N/2 people have been infected,
and at which dI/dt peaks; it is more relevant than
I(0) to the data and to the intepretation of the model.

• λ is the rate at which the outbreak unfolds; it
represents the rate per unit time a single person is
infecting others early in the outbreak.



Data Fitting Problems

• Given data points [tj , Ij ], where Ij is an estimate of
the cumulative number of people infected at time tj ,
we can try to minimize the sum of squared residuals

EI(N, λ, δ) =
J∑

j=1

[Ij − Ng(λ(tj − δ))]2.

• If the data is [tj , yj ] where tj = j and yj is the number
of new diagnoses per unit time, then we can fit dI/dt
to the data by minimizing

Ey(N, λ, δ) =
J∑

j=1

[yj − Nλg′(λ(tj − δ))]2.



Partial Solution

• We have posed nonlinear least squares problems.
• Numerical methods for optimization can yield

approximate minimizers N, λ, δ.
• We can make some progress algebraically, since E is

a quadratic function of N. Minimizing EI over N yields

Nλ,δ =
J∑

j=1

Ijg(λ(tj − δ))

/
J∑

j=1

[g(λ(tj − δ))]2.

• Substituting and simplifying yields

EI(Nλ,δ, λ, δ) =
J∑

j=1

I2
j − Nλ,δ

J∑
j=1

Ijg(λ(tj − δ)).



Simple Approaches to Minimizing E
• (“Etch-a-Sketch R©”) Fix one parameter (say δ) and

compute E(Nλ,δ, λ, δ) for various λ; look for the value
of λ that minimizes E for the chosen value of δ. Then
fix λ and adjust δ to make E as small as you can.
Then go back and see if you can make E smaller by
adjusting λ, etc.

• Make a contour plot of E(Nλ,δ, λ, δ) over a range of
plausible λ and δ values. Zoom in near the apparent
minimum and make another contour plot, etc.

• These approaches can be automated, and of course
there are more sophisticated approaches; the latter
become important when there are more parameters
and/or when the function to be minimized takes a
very long time to compute.


