SIR Model and Nonlinear Least Squares

Brian Hunt
University of Maryland
AMSC/MATH 420, Spring 2015
More Sophisticated Models

- Let’s re-examine the assumptions behind our first models and discuss how to make them more realistic.
- We assumed a fixed population size N that was isolated from other sources of the hypothetical illness we modeled.
- We assumed that a single number p represents the probability of an infectious person infecting a susceptible person on each day, for each such pair of people.
- A more realistic model would allow p to depend on a number of factors.
Modeling the Infection Probability p

- In real life, the infection probability p depends on the pair of people. However, introducing an independent probability p_{mn} for each pair of people m and n results in way too many parameters.

- Also, p depends on time; for example, day of week.

- Perhaps most importantly, p depends on how long the infectious person has had the illness. Typically it peaks a certain amount of time after infection, then decreases to 0.

- To keep the number of parameters manageable, we need to have a model for how p depends on these factors.
Compartmental Models

- Many models divide the population into a relatively small number of categories ("compartments") and keep track of the number of people in each compartment.

- Our first deterministic models had two compartments: "susceptible" and "infectious". We’ll call the continuous time model (3) the SI model.

- A widely studied model is the SIR model, which introduces a third compartment: "recovered" or "removed". People in this category are no longer infectious.

- Other possible compartments can take into account more stages in the progression of the illness, different behavior patterns, different biological characteristics, etc.
Fitting to Data, Revisited

- In our earlier discussion, we assumed that the number of infectious people at a given time could be measured. But how would we ever know this number?
- The number of infectious people is often inferred from data on new diagnoses of the illness. However:
 - Not all people who get the illness see a doctor.
 - Diagnosis may come well after a person becomes infectious.
 - Data is not always reported (e.g., to CDC) promptly or reliably.
- A common problem in modeling is to relate the quantities of interest to the available data.
The SI model we discussed before is often written

\[\frac{dS}{dt} = -pSI \]
\[\frac{dI}{dt} = pSI \]

where \(S \) is the “susceptible” population – those at risk to become infected at a given time – and \(I \) is the infectious population. For this model the sum \(S + I \) remains constant over time; we called the sum \(N \) and substituted \(S = N - I \) in the second equation.

The resulting solution was

\[I(t) = \frac{NI(0)}{I(0) + [N - I(0)]e^{-pNt}} \]
The SIR model (Kermack & McKendrick, 1927) is

\[
\begin{align*}
\frac{dS}{dt} &= -pSI \\
\frac{dI}{dt} &= pSI - rI \\
\frac{dR}{dt} &= rI
\end{align*}
\]

where \(R \) (for “recovered” or “removed”) is the number of people who were infected but are no longer infectious. In this case, \(I + R \) is the cumulative number of people infected.

One can add a term to the first equation representing new arrivals to the susceptible population.

There is no formula for the solutions.
Properties of Solution Families

- Each model’s family of solutions has some properties that are useful for fitting parameters to data.

- A time-shifted solution is also a solution: If \(I(t) \) is a solution, then \(I(t + c) \) is also a solution (with a different initial condition). This is because the model is “autonomous” – no explicit \(t \) dependence.

- A rescaled solution is also a solution: If \(I(t) \) is a solution, then \(aI(bt) \) is a solution of the same model with different parameters.

- Given a data set and the graph of a solution \(I(t) \), we can try to shift and rescale the graph to fit the data.
Change of parameters for SI model solution

- We can rewrite

\[I(t) = \frac{N}{1 + \left[N/I(0) - 1\right]e^{-pNt}} \]

\[= \frac{N}{1 + e^{-\lambda(t - \delta)}} = Ng(\lambda(t - \delta)) \]

where

\[\lambda = pN \]
\[\delta = \log[N/I(0) - 1]/\lambda \]
\[g(x) = 1/(1 + e^{-x}). \]

- The function \(g \) is sometimes called the standard logistic sigmoid function.
Interpretation of new parameters

- If we find parameters N, λ, δ that fit the data, we can solve for the original parameters p and $\mathcal{I}(0)$. However, the new parameters may be more interesting in their own right.
- N is the total number of people who will be infected over the outbreak, according to the model.
- δ is the time at which $N/2$ people have been infected, and at which $d\mathcal{I}/dt$ peaks; it is more relevant than $\mathcal{I}(0)$ to the data and to the interpretation of the model.
- λ is the rate at which the outbreak unfolds; it represents the rate per unit time a single person is infecting others early in the outbreak.
Data Fitting Problems

- Given data points \([t_j, \mathcal{I}_j]\), where \(\mathcal{I}_j\) is an estimate of the cumulative number of people infected at time \(t_j\), we can try to minimize the sum of squared residuals

\[
E_{\mathcal{I}}(N, \lambda, \delta) = \sum_{j=1}^{J} \left[\mathcal{I}_j - Ng(\lambda(t_j - \delta)) \right]^2.
\]

- If the data is \([t_j, y_j]\) where \(t_j = j\) and \(y_j\) is the number of new diagnoses per unit time, then we can fit \(d\mathcal{I}/dt\) to the data by minimizing

\[
E_{y}(N, \lambda, \delta) = \sum_{j=1}^{J} \left[y_j - N\lambda g'(\lambda(t_j - \delta)) \right]^2.
\]
Partial Solution

- We have posed nonlinear least squares problems.
- Numerical methods for optimization can yield approximate minimizers N, λ, δ.
- We can make some progress algebraically, since E is a quadratic function of N. Minimizing E_I over N yields

$$N_{\lambda, \delta} = \frac{\sum_{j=1}^{J} I_j g(\lambda(t_j - \delta))}{\sum_{j=1}^{J} [g(\lambda(t_j - \delta))]^2}.$$

- Substituting and simplifying yields

$$E_I(N_{\lambda, \delta}, \lambda, \delta) = \sum_{j=1}^{J} I_j^2 - N_{\lambda, \delta} \sum_{j=1}^{J} I_j g(\lambda(t_j - \delta)).$$
Simple Approaches to Minimizing E

- (“Etch-a-Sketch®”) Fix one parameter (say δ) and compute $E(N_{\lambda,\delta}, \lambda, \delta)$ for various λ; look for the value of λ that minimizes E for the chosen value of δ. Then fix λ and adjust δ to make E as small as you can. Then go back and see if you can make E smaller by adjusting λ, etc.

- Make a contour plot of $E(N_{\lambda,\delta}, \lambda, \delta)$ over a range of plausible λ and δ values. Zoom in near the apparent minimum and make another contour plot, etc.

- These approaches can be automated, and of course there are more sophisticated approaches; the latter become important when there are more parameters and/or when the function to be minimized takes a very long time to compute.