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First Models

• Preliminary goal: Model the spread of an contagious
illness through a population.

• Simplifying assumptions:
• The total population N is constant in time.
• A newly infected person becomes infectious the

next day and remains infectious forever.
• Each infectious person is equally likely

(probability p) to infect each noninfectious person
on a given day.

• Let I(t) be the number of infectious people at the
start of day t .



Stochastic Model

• Number the people from 1 to N.
• Let xn(t) be the infectious status (1 if infectious, 0 if

not) of person n at the start of day t .
• We can simulate a possible spread of the illness with

the following program (“rand”= random number):
for t=1:T-1

for n=1:N
let x(n,t+1)=x(n,t)
for m=1:N

if x(m,t)=1 and rand<p, then let x(n,t+1)=1
end

end
end



Simulation Results
• Notice that I(t) =

∑N
n=1 xn(t).

• Here are the results of a simulation with p = 10−4,
N = 1000, and I(1) = 10:



Simulation Results

• And here are the results of three different simulations
with p = 10−4, N = 1000, and I(1) = 10:



Simulation Results

• Finally, here are the results of three different
simulations with p = 10−4, N = 1000, and I(1) = 1:



Expected (Average) Daily Outcome

• Let’s determine the expected number of people
infected on a day t that starts with I(t) infectious
people and N − I(t) who are susceptible to infection.

• A susceptible person n has probability 1− p of NOT
being infected on day t by a given infectious person
m. Therefore, person n has probability (1− p)I(t) of
NOT being infected on day t .

• The expected number of people who are infected on
day t is then [1− (1− p)I(t)][N − I(t)], so

E [I(t + 1)] = I(t) + [1− (1− p)I(t)][N − I(t)]



Deterministic Models

• If both I(t) and N − I(t) are large enough, it may be
reasonable to approximate I(t + 1) by its expected
value, resulting in a deterministic model:

I(t + 1) = I(t) + [1− (1− p)I(t)][N − I(t)] (1)

• If pI(t) is small, we can approximate (1− p)I(t) by
1− pI(t), yielding a simpler model:

I(t + 1) = I(t) + pI(t)[N − I(t)] (2)

• For these models, given I(1) we can compute I(2),
I(3), ....



Deterministic versus Stochastic

• These deterministic models are much more efficient
to compute (1 calculation versus N2 for the stochastic
model). Their predictions may be just as reasonable
as any particular simulation of the stochastic model.

• The stochastic model can give some idea of the
uncertainty of its predictions via multiple simulations;
the deterministic models we’ve written down say
nothing about their uncertainty.



Continuous-Time Model
• The models discussed so far are called discrete-time

models; time t takes on only integer values.
• When the quantities being modeled change slowly

enough, we can approximate these models by
continuous-time processes. Approximating model (2)
by replacing ∆I = I(t + 1)− I(t) by dI/dt , we get

dI/dt = pI(t)[N − I(t)]. (3)

This differential equation is commonly called the
Logistic Growth Model.

• We can write down an exact solution to this
differential equation:

I(t) =
NI(0)

I(0) + [N − I(0)]e−pNt



Fitting the Model to Data

• The solution I(t) of model (3) has three parameters:
N, p, and I(0). Suppose we know N but not the other
two parameters. Given a set of data points [tj , Ij ], we
can ask which values of p and I(0) best fit the data.

• [A more fundamental (but more difficult) question is
whether the model can adequately fit the data at all;
are there ANY parameters of the model that fit the
data reasonably well?]

• We could try to minimize the sum of the squares of
the residuals Ij − I(tj). However, this would be a
nonlinear least squares problem, because I(t) does
not depend linearly on p or I(0).



Method 1 to use Linear Least Squares

• If the data is given at consecutive values of t , say
tj = j , then one approach is to use model (2) and
write

I(t + 1)− I(t) = pI(t)[N − I(t)].

The right-hand side is a linear function of the
parameter p, and linear least squares yields the value
of p that minimizes the sum of the squares of the
residuals Ij+1 − Ij − pIj(N − Ij).

• This doesn’t resolve the question of which value of
I(0) to use. If we let t0 = 0 for the first data point,
then we could let I(0) = I0. However, this might not
be the best choice of I(0) in order to make the
residuals Ij − I(tj) small.



Method 2 to use Linear Least Squares
• Going back to the solution of model (3), we can make

a transformation of variables so that the transformed
solution does depend linearly on its parameters. First
we divide both sides into N and simplify:

N/I(t) = 1 + [N/I(0)− 1]e−pNt

• Next subtract 1 and take the logarithm:

log[N/I(t)− 1] = log[N/I(0)− 1]− pNt

• Let Z (t) = log[N/I(t)− 1]; then the model becomes
Z (t) = Z (0)− pNt . This is a linear function of the
parameters pN and Z (0). One can transform the
data to pairs (tj ,Zj), use linear least squares to
determine values for pN and Z (0), and then solve for
p and I(0).



Caveat

• Both methods of using linear least squares transform
the model or its solution into a linear relationship
between two quantities that can be computed from
the data points (tj , Ij); in the second method, the
model predicts that Zj is a linear function of tj .

• Rather than simply accept the result of the least
squares fit, one should graph the predicted
relationship (e.g., Zj versus tj) and see if it actually
looks linear. This gives some idea of how valid the
model is.

• Regardless of how one determines values for p and
I(0), one should also check directly how well the
resulting I(t) fits the data.


