Modeling Epidemics: Introduction, Simple Model, and Linear Least Squares

Brian Hunt
University of Maryland AMSC/MATH 420, Spring 2015

First Models

- Preliminary goal: Model the spread of an contagious illness through a population.
- Simplifying assumptions:
- The total population N is constant in time.
- A newly infected person becomes infectious the next day and remains infectious forever.
- Each infectious person is equally likely (probability p) to infect each noninfectious person on a given day.
- Let $\mathcal{I}(t)$ be the number of infectious people at the start of day t.

Stochastic Model

- Number the people from 1 to N.
- Let $x_{n}(t)$ be the infectious status (1 if infectious, 0 if not) of person n at the start of day t.
- We can simulate a possible spread of the illness with the following program ("rand"= random number): for $t=1: T-1$
for $\mathrm{n}=1 \mathrm{~N}$
let $x(n, t+1)=x(n, t)$ for $m=1$: N
if $x(m, t)=1$ and rand $<p$, then let $x(n, t+1)=1$
end
end
end

Simulation Results

- Notice that $\mathcal{I}(t)=\sum_{n=1}^{N} x_{n}(t)$.
- Here are the results of a simulation with $p=10^{-4}$, $N=1000$, and $\mathcal{I}(1)=10$:

Simulation Results

- And here are the results of three different simulations with $p=10^{-4}, N=1000$, and $\mathcal{I}(1)=10$:

Simulation Results

- Finally, here are the results of three different simulations with $p=10^{-4}, N=1000$, and $\mathcal{I}(1)=1$:

Expected (Average) Daily Outcome

- Let's determine the expected number of people infected on a day t that starts with $\mathcal{I}(t)$ infectious people and $N-\mathcal{I}(t)$ who are susceptible to infection.
- A susceptible person n has probability $1-p$ of NOT being infected on day t by a given infectious person m. Therefore, person n has probability $(1-p)^{\mathcal{I}(t)}$ of NOT being infected on day t.
- The expected number of people who are infected on day t is then $\left[1-(1-p)^{\mathcal{I}(t)}\right][N-\mathcal{I}(t)]$, so

$$
E[\mathcal{I}(t+1)]=\mathcal{I}(t)+\left[1-(1-p)^{\mathcal{I}(t)}\right][N-\mathcal{I}(t)]
$$

Deterministic Models

- If both $\mathcal{I}(t)$ and $N-\mathcal{I}(t)$ are large enough, it may be reasonable to approximate $\mathcal{I}(t+1)$ by its expected value, resulting in a deterministic model:

$$
\begin{equation*}
\mathcal{I}(t+1)=\mathcal{I}(t)+\left[1-(1-p)^{\mathcal{I}(t)}\right][N-\mathcal{I}(t)] \tag{1}
\end{equation*}
$$

- If $p \mathcal{I}(t)$ is small, we can approximate $(1-p)^{\mathcal{I}(t)}$ by $1-p \mathcal{I}(t)$, yielding a simpler model:

$$
\begin{equation*}
\mathcal{I}(t+1)=\mathcal{I}(t)+p \mathcal{I}(t)[N-\mathcal{I}(t)] \tag{2}
\end{equation*}
$$

- For these models, given $\mathcal{I}(1)$ we can compute $\mathcal{I}(2)$, $\mathcal{I}(3), \ldots$

Deterministic versus Stochastic

- These deterministic models are much more efficient to compute (1 calculation versus N^{2} for the stochastic model). Their predictions may be just as reasonable as any particular simulation of the stochastic model.
- The stochastic model can give some idea of the uncertainty of its predictions via multiple simulations; the deterministic models we've written down say nothing about their uncertainty.

Continuous-Time Model

- The models discussed so far are called discrete-time models; time t takes on only integer values.
- When the quantities being modeled change slowly enough, we can approximate these models by continuous-time processes. Approximating model (2) by replacing $\Delta \mathcal{I}=\mathcal{I}(t+1)-\mathcal{I}(t)$ by $d I / d t$, we get

$$
\begin{equation*}
d \mathcal{I} / d t=p \mathcal{I}(t)[N-\mathcal{I}(t)] . \tag{3}
\end{equation*}
$$

This differential equation is commonly called the Logistic Growth Model.

- We can write down an exact solution to this differential equation:

$$
\mathcal{I}(t)=\frac{N \mathcal{I}(0)}{\mathcal{I}(0)+[N-\mathcal{I}(0)] e^{-p N t}}
$$

Fitting the Model to Data

- The solution $\mathcal{I}(t)$ of model (3) has three parameters: N, p, and $\mathcal{I}(0)$. Suppose we know N but not the other two parameters. Given a set of data points $\left[t, \mathcal{I}_{j}\right]$, we can ask which values of p and $\mathcal{I}(0)$ best fit the data.
- [A more fundamental (but more difficult) question is whether the model can adequately fit the data at all; are there ANY parameters of the model that fit the data reasonably well?]
- We could try to minimize the sum of the squares of the residuals $\mathcal{I}_{j}-\mathcal{I}\left(t_{j}\right)$. However, this would be a nonlinear least squares problem, because $\mathcal{I}(t)$ does not depend linearly on p or $\mathcal{I}(0)$.

Method 1 to use Linear Least Squares

- If the data is given at consecutive values of t, say $t_{j}=j$, then one approach is to use model (2) and write

$$
\mathcal{I}(t+1)-\mathcal{I}(t)=p \mathcal{I}(t)[N-\mathcal{I}(t)] .
$$

The right-hand side is a linear function of the parameter p, and linear least squares yields the value of p that minimizes the sum of the squares of the residuals $\mathcal{I}_{j+1}-\mathcal{I}_{j}-p \mathcal{I}_{j}\left(N-\mathcal{I}_{j}\right)$.

- This doesn't resolve the question of which value of $\mathcal{I}(0)$ to use. If we let $t_{0}=0$ for the first data point, then we could let $\mathcal{I}(0)=\mathcal{I}_{0}$. However, this might not be the best choice of $\mathcal{I}(0)$ in order to make the residuals $\mathcal{I}_{j}-\mathcal{I}\left(t_{j}\right)$ small.

Method 2 to use Linear Least Squares

- Going back to the solution of model (3), we can make a transformation of variables so that the transformed solution does depend linearly on its parameters. First we divide both sides into N and simplify:

$$
N / \mathcal{I}(t)=1+[N / \mathcal{I}(0)-1] e^{-p N t}
$$

- Next subtract 1 and take the logarithm:

$$
\log [N / \mathcal{I}(t)-1]=\log [N / \mathcal{I}(0)-1]-p N t
$$

- Let $Z(t)=\log [N / \mathcal{I}(t)-1]$; then the model becomes $Z(t)=Z(0)-p N t$. This is a linear function of the parameters $p N$ and $Z(0)$. One can transform the data to pairs $\left(t, Z_{j}\right)$, use linear least squares to determine values for $p N$ and $Z(0)$, and then solve for p and $\mathcal{I}(0)$.

Caveat

- Both methods of using linear least squares transform the model or its solution into a linear relationship between two quantities that can be computed from the data points $\left(t_{j}, \mathcal{I}_{j}\right)$; in the second method, the model predicts that Z_{j} is a linear function of t_{j}.
- Rather than simply accept the result of the least squares fit, one should graph the predicted relationship (e.g., Z_{j} versus t_{j}) and see if it actually looks linear. This gives some idea of how valid the model is.
- Regardless of how one determines values for p and $\mathcal{I}(0)$, one should also check directly how well the resulting $\mathcal{I}(t)$ fits the data.

