Representation and approximation of data

Wojciech Czaja and Brian Hunt

February 3, 2015

Norbert Wiener Center
for Harmonic Analysis and Applications

Outline

(9) Lecture 4: Overcomplete Representations

Outline

(9) Lecture 4: Overcomplete Representations

Frames

- Practical potential was not recognized until the 1990s.
- Among the generalizations of frames, many ideas have been proposed in the recent years, e.g., frames of subspaces (Casazza and Kutyniok), pseudo-frames (Li and Ogawa), fusion frames (Casazza, Flckus, Kutyniok), outer frames (Aldrubi, Cabrelli, and Molter), g-frames (Sun), and multiplicative frames (Benedetto).
- Frames have a simple interpretation in the context of fine dimensional vector spaces.

Finite frames

Definition

A collection $\left\{x_{n}\right\}_{n=1}^{N}$ in a Hilbert space \mathbb{H} is a frame for \mathbb{H} if there exist $0<A \leq B<\infty$ such that

$$
\forall x \in \mathbb{H}, A\|x\|^{2} \leq \sum_{n=1}^{N}\left|\left\langle x, x_{n}\right\rangle\right|^{2} \leq B\|x\|^{2}
$$

The constants A and B are the frame bounds. If $A=B$, the frame is an A-tight frame.

- Any spanning set of vectors in \mathbb{R}^{d} is a frame for \mathbb{R}^{d}.
- However, the spanning property does not indicate the value of frames for representation and stability in noisy environments.

Example of a frame

Typical frames are redundant systems with more elements thatithe wiener Center dimensionality of the space they represent.

From data to frame operators

- Given data space X of N vectors $x_{n} \in \mathbb{R}^{D}$. Without loss of generality, assume $\sum x_{n}=0$ (subtract mean).
- Let P be $D \times N$ matrix whose columns are the data vectors x_{n}.
- Let $\mathbb{H}=\operatorname{span}\left\{x_{n}\right\}_{n=1}^{N} \subseteq \mathbb{R}^{D}$. Define $L: \mathbb{H} \rightarrow \mathbb{R}^{N}$,

$$
v \mapsto P^{*} v=L(v)=\left\{\left\langle v, x_{n}\right\rangle\right\} \in \mathbb{R}^{N},
$$

and its Hilbert space adjoint $L^{*}: \mathbb{R}^{N} \rightarrow \mathbb{H} \subseteq \mathbb{R}^{D}$,

$$
w \mapsto L^{*}(w)=\sum_{n=1}^{N} w[n] x_{n}, \quad w=(w[1], w[2], \ldots, w[N]) .
$$

- L is the Bessel (analysis) operator, and L^{*} is the synthesis operator.

Finite frames

- Recall the Bessel operator $L(v)=\left\{\left\langle v, x_{n}\right\rangle\right\} \in \mathbb{R}^{N}$.
- The frame operator for \mathbb{H} is

$$
S=L^{*} L: \mathbb{H} \rightarrow \mathbb{H} .
$$

- $\left\{x_{n}\right\}_{n=1}^{N}$ is a frame for \mathbb{H} if

$$
\exists 0<A \leq B<\infty \quad \text { such that } \quad A I \leq S \leq B I .
$$

- $A I \leq S \leq B I$ implies that S is invertible and that $B^{-1} l \leq S \leq A^{-1} l$.

Finite frames

Theorem

a. $\left\{x_{n}\right\}_{n=1}^{N}$ is a frame for \mathbb{H} if and only if

$$
\forall v \in \mathbb{H}, v=\sum_{n=1}^{N}\left\langle v, S^{-1}\left(x_{n}\right)\right\rangle x_{n}=\sum_{n=1}^{N}\left\langle v, x_{n}\right\rangle S^{-1}\left(x_{n}\right)
$$

b. $\left\{x_{n}\right\}_{n=1}^{N}$ is an A-tight frame for \mathbb{H} if and only if $S=A I$.
P. Casazza, "The art of frame theory," arXiv preprint math/9910168, 1999.

Tight frame vs. ONB

Theorem (Vitali, 1921)

Let H be a Hilbert space, $\left\{x_{n}\right\} \subseteq H,\left\|x_{n}\right\|=1$.

$$
\left\{x_{n}\right\} \text { is 1-tight } \Leftrightarrow\left\{x_{n}\right\} \text { is an ONB. }
$$

Proof. If $\left\{x_{n}\right\}$ is 1 -tight, then $\forall y \in H,\|y\|^{2}=\sum_{n}\left|\left\langle y, x_{n}\right\rangle\right|^{2}$. Since each $\left\|x_{n}\right\|=1$, we have

$$
\begin{aligned}
1 & =\left\|x_{n}\right\|^{2}=\sum_{k}\left|\left\langle x_{n}, x_{k}\right\rangle\right|^{2}=1+\sum_{k, k \neq n}\left|\left\langle x_{n}, x_{k}\right\rangle\right|^{2} \\
& \Rightarrow \sum_{k \neq n}\left|\left\langle x_{n}, x_{k}\right\rangle\right|^{2}=0 \Rightarrow \forall n \neq k,\left\langle x_{n}, x_{k}\right\rangle=0 .
\end{aligned}
$$

The role of covariance

- The frame operator S can be written as

$$
S: \mathbb{H} \rightarrow \mathbb{H}, v \mapsto \sum_{n=1}^{N}\left\langle v, x_{n}\right\rangle x_{n}=\left(P P^{*}\right) v,
$$

where $P P^{*}$ is $D \times D$.

- Hence, up to a scaling factor and a translation, S is the linear operator identified with the $D \times D$ symmetric covariance matrix $C=\frac{1}{N} P P^{*}$ of the data space, i.e.

$$
C=\frac{1}{N}\left(\sum_{j=1}^{N} x_{j}[m] x_{j}[n]\right)_{m, n=1}^{D}, \quad x_{j}=\left(x_{j}[1], \ldots, x_{j}[D]\right) \in \mathbb{R}^{D} .
$$

The Grammian

- The Grammian operator for X is

$$
G=L L^{*}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N} .
$$

Thus, G is $N \times N$ and

$$
G=\left\{\left\langle x_{m}, x_{n}\right\rangle\right\}_{m, n=1}^{N}=P^{*} P .
$$

- $G=L L^{*}, N \times N$, and $S=L^{*} L, D \times D$, have the same non-zero eigenvalues, a fact we shall exploit.

FUNTFs

Let \mathbb{K} be an r-dimensional Hilbert space, and let $\Psi_{n} \in \mathbb{K},\left\|\Psi_{n}\right\|=1$, $n=1, \ldots, s$.

- If $\left\{\Psi_{n}\right\}_{n=1}^{s}$ is a finite unit norm tight frame (FUNTF) for $\mathbb{K}=\mathbb{R}^{r}$, then

$$
\forall y \in \mathbb{K}, \quad y=\frac{s}{r} \sum_{n=1}^{s}\left\langle y, \Psi_{n}\right\rangle \Psi_{n} .
$$

- Problem: Find FUNTFs analytically, effectively, and computationally.

Characterization of FUNTFs

The total frame force potential energy is:

$$
\operatorname{TFP}\left(\left\{\Psi_{n}\right\}\right)=\sum_{m=1}^{s} \sum_{n=1}^{s}\left|\left\langle\Psi_{m}, \Psi_{n}\right\rangle\right|^{2}
$$

Theorem

- Let $s=r$. The minimum value of TFP, for the frame force and s variables, is s; and the minimizers are precisely the orthonormal sets of s elements for \mathbb{K}.
- Let $s>r$. The minimum value of TFP, for the frame force and s variables, is s^{2} / r; and the minimizers are precisely the FUNTFs of s elements for \mathbb{K}.
J. J. Benedetto and M. Fickus, "Finite normalized tight frames," Adv. Comp. Math., 2003, Vol. 18, pp. 357-385.

Examples of FUNTFs

Figure ：The vertices of the Platonic solids are examples of finite unit norm tight frames．

R．Vale，S．Waldron，＂The vertices of the Platonic solids are tight frames，＂in：Proceedings of the Conference on Advances in Constructive Approximation（M．Neamtu，E．B．Saff，eds．）．Brentwood，TN：Nashboro Press， 2004.

Examples of FUNTFs

Figure : The truncated icosahedron (also known as the "soccer ball" or "bucky ball") forms a tight frame for n-dimensional Euclidean space.

Motivation for frames

- Different classes of interest may not be orthogonal to each other; however, they may be captured by different frame elements. It is plausible that classes may correspond to elements in a frame but not elements in a basis.
- A frame generalizes the concept of an orthonormal basis. Frame elements are non-orthogonal.
- Frames provide over-complete data decompositions, often useful for numerical stability and noise reduction.

