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Frames

Practical potential was not recognized until the 1990s.
Among the generalizations of frames, many ideas have been
proposed in the recent years, e.g., frames of subspaces
(Casazza and Kutyniok), pseudo-frames (Li and Ogawa), fusion
frames (Casazza, FIckus, Kutyniok), outer frames (Aldrubi,
Cabrelli, and Molter), g-frames (Sun), and multiplicative frames
(Benedetto).
Frames have a simple interpretation in the context of fine
dimensional vector spaces.
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Finite frames

Definition

A collection {xn}N
n=1 in a Hilbert space H is a frame for H if there exist

0 < A ≤ B <∞ such that

∀x ∈ H, A‖x‖2 ≤
N∑

n=1

|〈x , xn〉|2 ≤ B‖x‖2.

The constants A and B are the frame bounds. If A = B, the frame is
an A-tight frame.

Any spanning set of vectors in Rd is a frame for Rd .
However, the spanning property does not indicate the value of
frames for representation and stability in noisy environments.
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Example of a frame

Typical frames are redundant systems with more elements that the
dimensionality of the space they represent.
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From data to frame operators

Given data space X of N vectors xn ∈ RD. Without loss of
generality, assume

∑
xn = 0 (subtract mean).

Let P be D × N matrix whose columns are the data vectors xn.
Let H = span{xn}N

n=1 ⊆ RD. Define L : H→ RN ,

v 7→ P∗v = L(v) = {〈v , xn〉} ∈ RN ,

and its Hilbert space adjoint L∗ : RN → H ⊆ RD,

w 7→ L∗(w) =
N∑

n=1

w [n]xn, w = (w [1],w [2], . . . ,w [N]).

L is the Bessel (analysis) operator, and L∗ is the
synthesis operator.
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Finite frames

Recall the Bessel operator L(v) = {〈v , xn〉} ∈ RN .
The frame operator for H is

S = L∗L : H→ H.

{xn}N
n=1 is a frame for H if

∃ 0 < A ≤ B <∞ such that AI ≤ S ≤ BI.

AI ≤ S ≤ BI implies that S is invertible and that
B−1I ≤ S ≤ A−1I.
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Finite frames

Theorem

a. {xn}N
n=1 is a frame for H if and only if

∀ v ∈ H, v =
N∑

n=1

〈v ,S−1(xn)〉xn =
N∑

n=1

〈v , xn〉S−1(xn).

b. {xn}N
n=1 is an A-tight frame for H if and only if S = AI.

P. Casazza, “The art of frame theory,” arXiv preprint math/9910168, 1999.
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Tight frame vs. ONB

Theorem (Vitali, 1921)

Let H be a Hilbert space, {xn} ⊆ H, ‖xn‖ = 1.

{xn} is 1-tight⇔ {xn} is an ONB.

Proof. If {xn} is 1-tight, then ∀y ∈ H, ‖y‖2 =
∑

n |〈y , xn〉|2. Since each
‖xn‖ = 1, we have

1 = ‖xn‖2 =
∑

k

|〈xn, xk 〉|2 = 1 +
∑

k,k 6=n

|〈xn, xk 〉|2

⇒
∑
k 6=n

|〈xn, xk 〉|2 = 0⇒ ∀n 6= k , 〈xn, xk 〉 = 0.
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The role of covariance

The frame operator S can be written as

S : H→ H, v 7→
N∑

n=1

〈v , xn〉xn = (PP∗)v ,

where PP∗ is D × D.
Hence, up to a scaling factor and a translation, S is the linear
operator identified with the D × D symmetric covariance matrix
C = 1

N PP∗ of the data space, i.e.

C =
1
N

 N∑
j=1

xj [m]xj [n]

D

m,n=1

, xj = (xj [1], . . . , xj [D]) ∈ RD.

Wojciech Czaja and Brian Hunt Data representation and approximation



Lecture 4: Overcomplete Representations

The Grammian

The Grammian operator for X is

G = LL∗ : RN → RN .

Thus, G is N × N and

G = {〈xm, xn〉}N
m,n=1 = P∗P.

G = LL∗, N × N, and S = L∗L, D × D, have the same non-zero
eigenvalues, a fact we shall exploit.
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FUNTFs

Let K be an r -dimensional Hilbert space, and let Ψn ∈ K, ||Ψn|| = 1,
n = 1, . . . , s.

If {Ψn}s
n=1 is a finite unit norm tight frame (FUNTF) for K = Rr ,

then

∀ y ∈ K, y =
s
r

s∑
n=1

〈y ,Ψn〉Ψn.

Problem: Find FUNTFs analytically, effectively, and
computationally.
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Characterization of FUNTFs

The total frame force potential energy is:

TFP({Ψn}) =
s∑

m=1

s∑
n=1

|〈Ψm,Ψn〉|2.

Theorem
Let s = r . The minimum value of TFP, for the frame force and s
variables, is s; and the minimizers are precisely the orthonormal
sets of s elements for K.
Let s > r . The minimum value of TFP, for the frame force and s
variables, is s2/r ; and the minimizers are precisely the FUNTFs
of s elements for K.

J. J. Benedetto and M. Fickus, “Finite normalized tight frames,” Adv. Comp. Math., 2003, Vol. 18, pp. 357–385.

Wojciech Czaja and Brian Hunt Data representation and approximation



Lecture 4: Overcomplete Representations

Examples of FUNTFs

Figure : The vertices of the Platonic solids are examples of finite unit norm
tight frames.

R. Vale, S. Waldron, “The vertices of the Platonic solids are tight frames,” in: Proceedings of the Conference on Advances in Constructive

Approximation (M. Neamtu, E. B. Saff, eds.). Brentwood, TN: Nashboro Press, 2004.
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Examples of FUNTFs

Figure : The truncated icosahedron (also known as the “soccer ball” or
“bucky ball”) forms a tight frame for n-dimensional Euclidean space.
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Motivation for frames

Different classes of interest may not be orthogonal to each other;
however, they may be captured by different frame elements. It is
plausible that classes may correspond to elements in a frame but
not elements in a basis.
A frame generalizes the concept of an orthonormal basis. Frame
elements are non–orthogonal.
Frames provide over-complete data decompositions, often useful
for numerical stability and noise reduction.
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