Data-dependent and a priori representations

Wojciech Czaja and Brian Hunt

February 12, 2015

Norbert Wiener Center
for Harmonic Analysis and Applications

Outline

(1) Lecture 3: Data-dependent Representations

Outline

(1) Lecture 3: Data-dependent Representations

Diversity of basis representations

- Let us start by recalling that a basis is a set of linearly independent vectors which can represent every vector in a given vector space through their linear combinations.
- An orthogonal basis for a vector space with an inner product, is a basis with vectors which are mutually orthogonal (perpendicular). If the vectors of an orthogonal basis are or length (norm) 1, the resulting basis is an orthonormal basis (ONB).
- Many examples of bases exist in a given Euclidean D-dimensional vector space, ranging from classical $0-1$ bases, through Fourier, Gabor, wavelet, shearlet, curvelet, etc etc.

Fourier Basis

Given $D>0$, define the following $D \times D$ matrix:

$$
F(m, n)=\frac{1}{\sqrt{N}} e^{2 \pi i m n / D}, \quad m, n=0, \ldots D-1 .
$$

The columns (or rows) of this matrix form an orthonormal basis for the space of D-dimensional complex vectors \mathbb{C}^{D}. This basis is called the Fourier basis. And the matrix F is known as the Discrete Fourier Transform. Clearly F is a unitary matrix, and as such invertible.

Bases

The role of a basis is to allow us to represent elements of the vector space in terms of sequences of scalars (numbers), which are called vector coordinates. This is an important step, because thanks to this representation, abstract or complicated objects obtain a uniform mathematical format. The reason for this may not necessarily be clear when we think of the most typical example of a vector space: d-dimensional Euclidean vector space. This is because the Euclidean space is not just a good example of a vector space, it is also a prototypical example, and last but not least - a finite dimensional vector space.
Infinite dimensional vector spaces provide us with more intriguing examples of objects, and the role of a basis which allows us to replace these complicated objects by sequences of numbers becomes much more clear.

- Vector spaces of polynomials;
- Function spaces (Lipschitz, integrable, finite energy functions, etc.)

From data to frame operators

- Given data space X of N vectors $x_{n} \in \mathbb{R}^{D}$. Without loss of generality, assume $\sum x_{n}=0$ (subtract mean).
- Let P be $D \times N$ matrix whose columns are the data vectors x_{n}.
- Let $\mathbb{H}=\operatorname{span}\left\{x_{n}\right\}_{n=1}^{N} \subseteq \mathbb{R}^{D}$. Define $L: \mathbb{H} \rightarrow \mathbb{R}^{N}$,

$$
v \mapsto P^{*} v=L(v)=\left\{\left\langle v, x_{n}\right\rangle\right\} \in \mathbb{R}^{N},
$$

and its Hilbert space adjoint $L^{*}: \mathbb{R}^{N} \rightarrow \mathbb{H} \subseteq \mathbb{R}^{D}$,

$$
w \mapsto L^{*}(w)=\sum_{n=1}^{N} w[n] x_{n}, \quad w=(w[1], w[2], \ldots, w[N]) .
$$

- L is the Bessel (analysis) operator, and L^{*} is the synthesis operator.

The role of covariance

- The frame operator S can be written as

$$
S: \mathbb{H} \rightarrow \mathbb{H}, v \mapsto \sum_{n=1}^{N}\left\langle v, x_{n}\right\rangle x_{n}=\left(P P^{*}\right) v,
$$

where $P P^{*}$ is $D \times D$.

- Hence, up to a scaling factor and a translation, S is the linear operator identified with the $D \times D$ symmetric covariance matrix $C=\frac{1}{N} P P^{*}$ of the data space, i.e.

$$
C=\frac{1}{N}\left(\sum_{j=1}^{N} x_{j}[m] x_{j}[n]\right)_{m, n=1}^{D}, \quad x_{j}=\left(x_{j}[1], \ldots, x_{j}[D]\right) \in \mathbb{R}^{D} .
$$

Principal Component Analysis

- The covariance matrix C we have just defined is certainly symmetric and also positive semidefinite, since for every vector y, we have

$$
\langle y, C y\rangle=\frac{1}{N} \sum_{j=1}^{N}\left|\left\langle y, x_{j}\right\rangle\right|^{2} \geq 0
$$

- Thus, C can be diagonalized, and its eigenvalues are all nonnegative. If K denotes the orthogonal matrix that diagonalizes C, then we have that $K^{*} C K$ is diagonal and the whole process of analyzing data using the eigenbases of covariance matrix is known as Principal Component Analysis (PCA). K is also known as principal orthogonal decomposition or Karhunen-Loeve transform.
- The columns of K are the eigenvectors of C. The number of positive eigenvalues is the actual number of uncorrelated parameters, or degrees of freedom in the original data setoxert wiener Center Each eigenvalue is the variance of its degree of freedom.

