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Diversity of basis representations

Let us start by recalling that a basis is a set of linearly
independent vectors which can represent every vector in a given
vector space through their linear combinations.
An orthogonal basis for a vector space with an inner product, is
a basis with vectors which are mutually orthogonal
(perpendicular). If the vectors of an orthogonal basis are or
length (norm) 1, the resulting basis is an orthonormal basis
(ONB).
Many examples of bases exist in a given Euclidean
D-dimensional vector space, ranging from classical 0− 1 bases,
through Fourier, Gabor, wavelet, shearlet, curvelet, etc etc.
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Fourier Basis

Given D > 0, define the following D × D matrix:

F (m,n) =
1√
N

e2πimn/D, m,n = 0, . . .D − 1.

The columns (or rows) of this matrix form an orthonormal basis for
the space of D-dimensional complex vectors CD. This basis is called
the Fourier basis. And the matrix F is known as the Discrete Fourier
Transform. Clearly F is a unitary matrix, and as such invertible.
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Bases

The role of a basis is to allow us to represent elements of the vector
space in terms of sequences of scalars (numbers), which are called
vector coordinates. This is an important step, because thanks to this
representation, abstract or complicated objects obtain a uniform
mathematical format. The reason for this may not necessarily be
clear when we think of the most typical example of a vector space:
d-dimensional Euclidean vector space. This is because the Euclidean
space is not just a good example of a vector space, it is also a
prototypical example, and last but not least - a finite dimensional
vector space.
Infinite dimensional vector spaces provide us with more intriguing
examples of objects, and the role of a basis which allows us to
replace these complicated objects by sequences of numbers
becomes much more clear.

Vector spaces of polynomials;
Function spaces (Lipschitz, integrable, finite energy functions,
etc.)
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From data to frame operators

Given data space X of N vectors xn ∈ RD. Without loss of
generality, assume

∑
xn = 0 (subtract mean).

Let P be D × N matrix whose columns are the data vectors xn.
Let H = span{xn}N

n=1 ⊆ RD. Define L : H→ RN ,

v 7→ P∗v = L(v) = {〈v , xn〉} ∈ RN ,

and its Hilbert space adjoint L∗ : RN → H ⊆ RD,

w 7→ L∗(w) =
N∑

n=1

w [n]xn, w = (w [1],w [2], . . . ,w [N]).

L is the Bessel (analysis) operator, and L∗ is the
synthesis operator.
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The role of covariance

The frame operator S can be written as

S : H→ H, v 7→
N∑

n=1

〈v , xn〉xn = (PP∗)v ,

where PP∗ is D × D.
Hence, up to a scaling factor and a translation, S is the linear
operator identified with the D × D symmetric covariance matrix
C = 1

N PP∗ of the data space, i.e.

C =
1
N

 N∑
j=1

xj [m]xj [n]

D

m,n=1

, xj = (xj [1], . . . , xj [D]) ∈ RD.
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Principal Component Analysis

The covariance matrix C we have just defined is certainly
symmetric and also positive semidefinite, since for every vector
y , we have

〈y ,Cy〉 = 1
N

N∑
j=1

|〈y , xj〉|2 ≥ 0.

Thus, C can be diagonalized, and its eigenvalues are all
nonnegative. If K denotes the orthogonal matrix that
diagonalizes C, then we have that K ∗CK is diagonal and the
whole process of analyzing data using the eigenbases of
covariance matrix is known as Principal Component Analysis
(PCA). K is also known as principal orthogonal decomposition or
Karhunen-Loeve transform.
The columns of K are the eigenvectors of C. The number of
positive eigenvalues is the actual number of uncorrelated
parameters, or degrees of freedom in the original data set X .
Each eigenvalue is the variance of its degree of freedom.
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