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Data representation

The phrase “data representation” usually refers to the methods
used to represent information stored in a computer. Computers can
store many different types of information, including, but not limited to:
numbers, text, graphics (many varieties), sound, etc etc. Each such
type of information must be formed using appropriate codes, because
in the end, all of the information stored in a computer must be
represented by finite sequences of 0s and 1s. This is how computer
scientists and engineers think about data representation. Moreover,
from this perspective, all processing of the stored information is
performed on those binary sequences, and then appropriately
interpreted through the use of aforementioned codes and other
software techniques.
In mathematics, the concept of data representation is much broader:
it is any mathematical form that data can be described by. This
includes analytic, algebraic, statistical, or geometric representations.
In this class we will narrow this scope to focus on analytic/geometric
forms of data representation by means of vector spaces.
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Linear Representation by Vector Spaces

A vector space is a mathematical structure formed by two types of
objects: a collection of elements called vectors, and two operations
on pairs of vectors: addition and scalar multiplication. As such two
vectors may be added together, and any vector can multiplied by
numbers, called scalars. Thus, for a vector space X , for any two of its
elements x , y ∈ X , and any numbers α, β ∈ F (a field of numbers), we
can form the linear combinations as new elements of X:

α · x + β · y ∈ X .
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Axioms of Vector Spaces

The operations of addition and scalar multiplication in a vector space
must satisfy a number of conditions called axioms:

Associativity of addition
Commutativity of addition
Identity element of addition
Inverse elements of addition
Compatibility of scalar multiplication with field multiplication
Identity element of scalar multiplication
Distributivity of scalar multiplication with respect to vector addition
Distributivity of scalar multiplication with respect to field addition
Giuseppe Peano, Geometrical Calculus, 1888
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Diversity of representations: from bases to frames

A basis is a set of linearly independent vectors which can
represent every vector in a given vector space through their
linear combinations.
An orthogonal basis for a vector space with an inner product, is
a basis with vectors which are mutually orthogonal
(perpendicular). If the vectors of an orthogonal basis are or
length (norm) 1, the resulting basis is an orthonormal basis
(ONB).
An ONB may cease to be an ONB after even a small
perturbation, or when any of its elements is removed. We seek
thus representation systems with more stability.
Frames were introduced by Dunford and Schaeffer in 1952.
R. J. Dunford and A. C. Schaeffer , “A class of nonharmonic Fourier series,” Trans. Amer. Math. Soc., 1952, Vol. 72, pp. 341–366.
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Bases

The role of a basis is to allow us to represent elements of the vector
space in terms of sequences of scalars (numbers), which are called
vector coordinates. This is an important step, because thanks to this
representation, abstract or complicated objects obtain a uniform
mathematical format. The reason for this may not necessarily be
clear when we think of the most typical example of a vector space:
d-dimensional Euclidean vector space. This is because the Euclidean
space is not just a good example of a vector space, it is also a
prototypical example, and last but not least - a finite dimensional
vector space.
Infinite dimensional vector spaces provide us with more intriguing
examples of objects, and the role of a basis which allows us to
replace these complicated objects by sequences of numbers
becomes much more clear.

Vector spaces of polynomials;
Function spaces (Lipschitz, integrable, finite energy functions,
etc.)
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Example: Polynomials of 1 variable with real
coefficients

The set of polynomials with coefficients in R is a vector space over R,
denoted typically by P(R). Vector addition and scalar multiplication
are defined in the obvious manner. If the degree of the polynomials is
unrestricted then the dimension of P(R) is infinite. If instead one
restricts the polynomials to those with degree less than or equal to an
integer n, then we obtain a vector space of dimension n + 1,
commonly denoted by Pn(R).
One possible basis for P(R) is the monomial basis: 1, x , x2, x3, . . . .
The coordinates of any polynomial with respect to this basis are its
coefficients. Say, for f = 3 + x2 + 17.1x7, the coefficients are
3,0,1,0,0,0,0,17.1,0, . . ..
Now, the true advantage of using basis representations for
polynomials requires us to recognize polynomials as functions, rather
than just abstract algebraic objects. For this, however, we need to
introduce some new concepts allowing us to measure distances in
vector spaces.
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Normed vector spaces

A norm in a vector space X is a non-negative real-valued function
x 7→ ‖x‖, which satisfies the axioms of sublinearlity (also known as
Minkowski inequality or triangle inequality), and non-degeneracy.
A normed vector space is a pair (X , ‖ · ‖) where X is a vector space
and ‖ · ‖ a norm on X .
Every finite (N) dimensional vector space X can be equipped with a
norm. Indeed, let {b1, . . . ,bN} be a basis for X . Then, for any x ∈ X ,
we can write uniquely:

x =
N∑

n=1

xnbn.

With this notation we can define various norms, e.g.,:

‖x‖p = (|x1|p + . . .+ |xN |p)
1
p , p ≥ 1,

‖x‖∞ = max{|x1|, . . . , |xN |}.
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Euclidean norm

When we fix p = 2 in the definition of the p-norm:

‖x‖2 =
√
|x1|2 + . . .+ |xN |2,

which is the standard Euclidean norm for the N-dimensional vector
space. This is the same norm that is used in the least squares
optimization problems.
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