Lecture 7: Principal Components Analysis

Outline

1. Lecture 7: Principal Components Analysis
Lecture 7: Principal Components Analysis
Recall the covariance

- The frame operator S can be written as
 $$S : H \rightarrow H, \quad v \mapsto \sum_{n=1}^{N} \langle v, x_n \rangle x_n = (PP^*)v,$$
 where PP^* is $D \times D$.

- Hence, up to a scaling factor and a translation, S is the linear operator identified with the $D \times D$ symmetric covariance matrix $C = \frac{1}{N} PP^*$ of the data space, i.e.
 $$C = \frac{1}{N} \left(\sum_{j=1}^{N} x_j[m]x_j[n] \right)^D_{m,n=1}, \quad x_j = (x_j[1], \ldots, x_j[D]) \in \mathbb{R}^D.$$
Principal Component Analysis

- The covariance matrix C we have just defined is certainly symmetric and also positive semidefinite, since for every vector y, we have

$$\langle y, Cy \rangle = \frac{1}{N} \sum_{j=1}^{N} |\langle y, x_j \rangle|^2 \geq 0.$$

- Thus, C can be diagonalized, and its eigenvalues are all nonnegative. If K denotes the orthogonal matrix that diagonalizes C, then we have that K^*CK is diagonal and the whole process of analyzing data using the eigenbasis of covariance matrix is known as **Principal Component Analysis (PCA)**. K is also known as principal orthogonal decomposition or Karhunen-Loeve transform.

- The columns of K are the eigenvectors of C. The number of positive eigenvalues is the actual number of uncorrelated parameters, or degrees of freedom in the original data set X. Each eigenvalue is the variance of its degree of freedom.

We shall now present a different, data-inspired model for PCA.

- Assume we have D observed (measured) variables:
 $$y = [y_1, \ldots, y_D]^T.$$
 This is our data.

- Assume we know that our data is obtained by a linear transformation W from d unknown variables $x = [x_1, \ldots, x_d]^T$:
 $$y = W(x).$$

Typically we assume $d < D$.

- Assume moreover that the $D \times d$ matrix W is a change of a coordinate system, i.e., columns of W (or rows of W^T) are orthonormal to each other:
 $$W^T W = I_d.$$

Note that WW^T need not be an identity.
Given the above assumptions the problem of PCA can be stated as follows:

How can we find the transformation W and the dimension d from a finite number of measurements y?

We shall need 2 additional assumptions:

- Assume that the unknown variables are Gaussian;
- Assume that both the unknown variables and the observations have mean zero (this is easily guaranteed by subtracting the mean, or the sample mean).
For a noninvertible matrix, we have its pseudoinverse defined as

\[W^+ = (W^T W)^{-1} W^T \]

In our case, \(W^+ = W^T \), Thus, if \(y = Wx \), we have

\[WW^T y = W W^T W x = W l d_d x = y, \]

or, equivalently,

\[y - WW^T y = 0. \]

With the presence of noise, we cannot assume anymore the perfect reconstruction, hence, we shall minimize the reconstruction error defined as

\[E_y(\|y - WW^T y\|_2^2). \]

It is not difficult to see that

\[E_y(\|y - WW^T y\|_2^2) = E_y(y^T y) - E_y(y^T WW^T y). \]
As $E_y(y^T y)$ is constant, our minimization of error reconstruction turns into a maximization of $E_y(y^T WW^T y)$. In reality, we known little about y, so we have to rely on the measurements $y(k)$, $k = 1, \ldots, N$. Then,

$$E_y(y^T WW^T y) \sim \frac{1}{N} \sum_{n=1}^{N} (y(n))^T WW^T (y(n)) \sim \frac{1}{N} \text{tr}(Y^T WW^T Y),$$

where Y is the matrix whose columns are the measurements $y(n)$ (hence Y is a $D \times N$ matrix).

Using SVD for Y: $Y = V \Sigma U^T$, we obtain:

$$E_y(y^T WW^T y) \sim \frac{1}{N} \text{tr}(U \Sigma^T V^T WW^T V \Sigma U^T).$$

Therefore, after some computations we obtain:

$$\text{argmax}_W E_y(y^T WW^T y) \sim V \text{Id}_{D \times d},$$

and so $x \sim \text{Id}_{d \times D} V^T y$.
Another approach to PCA is by assuming that the unknown variables are uncorrelated (in a statistical sense). This can boil down in practice to the assumption that the covariance matrix C is diagonal. Since the observed measurements are often corrupted, we may write

$$C_y = E(yy^T) = E(Wxx^TW^T) = WE(xx^T)W^T = WC_xW^T.$$

Alternatively, because of the orthogonality in W, we have

$$C_x = W^TC_yW.$$

Now, we use eigendecomposition of C_y (since we can), to write $C_y = V\Lambda V^T$. This leads to

$$C_x = W^TV\Lambda V^TW.$$

This equality can hold only when $W = V Id_{D \times d}$.