Data-dependent and a priori representations

Wojciech Czaja and Brian Hunt

March 12, 2015

Norbert Wiener Center
for Harmonic Analysis and Applications

Outline

(1) Lecture 7: Principal Components Analysis

Outline

(1) Lecture 7: Principal Components Analysis

Recall he covariance

- The frame operator S can be written as

$$
S: \mathbb{H} \rightarrow \mathbb{H}, v \mapsto \sum_{n=1}^{N}\left\langle v, x_{n}\right\rangle x_{n}=\left(P P^{*}\right) v,
$$

where $P P^{*}$ is $D \times D$.

- Hence, up to a scaling factor and a translation, S is the linear operator identified with the $D \times D$ symmetric covariance matrix $C=\frac{1}{N} P P^{*}$ of the data space, i.e.

$$
C=\frac{1}{N}\left(\sum_{j=1}^{N} x_{j}[m] x_{j}[n]\right)_{m, n=1}^{D}, \quad x_{j}=\left(x_{j}[1], \ldots, x_{j}[D]\right) \in \mathbb{R}^{D} .
$$

Principal Component Analysis

- The covariance matrix C we have just defined is certainly symmetric and also positive semidefinite, since for every vector y, we have

$$
\langle y, C y\rangle=\frac{1}{N} \sum_{j=1}^{N}\left|\left\langle y, x_{j}\right\rangle\right|^{2} \geq 0 .
$$

- Thus, C can be diagonalized, and its eigenvalues are all nonnegative. If K denotes the orthogonal matrix that diagonalizes C, then we have that $K^{*} C K$ is diagonal and the whole process of analyzing data using the eigenbasis of covariance matrix is known as Principal Component Analysis (PCA). K is also known as principal orthogonal decomposition or Karhunen-Loeve transform.
- The columns of K are the eigenvectors of C. The number of positive eigenvalues is the actual number of uncorrelated parameters, or degrees of freedom in the original data set, $X_{\text {er wer }}$ wiener Each eigenvalue is the variance of its degree of freedom."

PCA History

- K. Pearson, On lines and planes of closest fit to systems of points in space, Philosophical Magazine, vol. 2 (1901), pp. 559-572
- H. Hoteling, Analysis of a complex of statistical variables into principal components, Journal of Education Psychology, vol. 24 (1933), pp. 417-44
- K. Karhunen, Zur Spektraltheorie stochastischer Prozesse, Ann. Acad. Sci. Fennicae, vol. 34 (1946)
- M. Loève, Fonctions aléatoire du second ordre, in Processus stochastiques et mouvement Brownien, p. 299, Paris (1948)

Data perspective

We shall now present a different, data-inspired model for PCA.

- Assume we have D observed (measured) variables: $y=\left[y_{1}, \ldots, y_{D}\right]^{T}$. This is our data.
- Assume we know that our data is obtained by a linear transformation W from d unknown variables $x=\left[x_{1}, \ldots, x_{d}\right]^{T}$:

$$
y=W(x)
$$

Typically we assume $d<D$.

- Assume moreover that the $D \times d$ matrix W is a change of a coordinate system, i.e., columns of W (or towns of W^{T}) are orthonormal to each other:

$$
W^{\top} W=I d_{d} .
$$

Note that $W W^{\top}$ need not be an identity.

Given the above assumptions the problem of PCA can be stated as follows:

How can we find the transformation W and the dimension d from a finite number of measurements y ?

We shall need 2 additional assumptions:

- Assume that the unknown variables are Gaussian;
- Assume that both the unknown variables and the observations have mean zero (this is easily guaranteed by subtracting the mean, or the sample mean).

PCA minimizing the reconstruction error

For a noninvertible matrix, we have its pseudoinverse defined as

$$
W^{+}=\left(W^{T} W\right)^{-1} W^{T}
$$

In our case, $W^{+}=W^{T}$, Thus, if $y=W x$, we have

$$
W W^{\top} y=W W^{\top} W x=W I d_{d} x=y
$$

or, equivalently,

$$
y-W W^{T} y=0
$$

With the presence of noise, we cannot assume anymore the perfect reconstruction, hence, we shall minimize the reconstruction error defined as

$$
E_{y}\left(\left\|y-W W^{\top} y\right\|_{2}^{2}\right) .
$$

It is not difficult to see that

$$
E_{y}\left(\left\|y-W W^{\top} y\right\|_{2}^{2}\right)=E_{y}\left(y^{\top} y\right)-E_{y}\left(y^{\top} W W^{\top} y\right)
$$

PCA from minimizing the reconstruction error

As $E_{y}\left(y^{\top} y\right)$ is constant, our minimization of error reconstruction turns into a maximization of $E_{y}\left(y^{\top} W W^{\top} y\right)$. In reality, we known little about y, so we have to rely on the measurements $y(k), k=1, \ldots, N$. Then,

$$
E_{y}\left(y^{\top} W W^{T} y\right) \sim \frac{1}{N} \sum_{n=1}^{N}(y(n))^{T} W W^{T}(y(n)) \sim \frac{1}{N} \operatorname{tr}\left(Y^{\top} W W^{T} Y\right)
$$

where Y is the matrix whose columns are the measurements $y(n)$ (hence Y is a $D \times N$ matrix).
Using SVD for $Y: Y=V \Sigma U^{\top}$, we obtain:

$$
E_{y}\left(y^{\top} W W^{\top} y\right) \sim \frac{1}{N} \operatorname{tr}\left(U \Sigma^{\top} V^{\top} W W^{\top} V \Sigma U^{T}\right)
$$

Therefore, after some computations we obtain:

$$
\operatorname{argmax}_{W} E_{y}\left(y^{\top} W W^{\top} y\right) \sim V I d_{D \times d}
$$

Norbert Wiener Center for Harmonic Analysis and Applications and so $x \sim I d_{d \times D} V^{T} y$.

PCA from maximizing the decorrelation

Another approach to PCA is by assuming that the unknown variables are uncorrelated (in a statistical sense). This can boil down in practice to the assumption that the covariance matrix C is diagonal. Since the observed measurements are often corrupted, we may write

$$
C_{y}=E\left(y y^{\top}\right)=E\left(W x x^{\top} W^{\top}\right)=W E\left(x x^{\top}\right) W^{\top}=W C_{x} W^{\top} .
$$

Alternatively, because of the orthogonality in W, we have

$$
C_{x}=W^{\top} C_{y} W
$$

Now, we use eigendecomposition of C_{y} (since we can), to write $C_{y}=V \wedge V^{T}$. This leads to

$$
C_{x}=W^{\top} V \wedge V^{\top} W
$$

This equality can hold only when $W=V I d_{D \times d}$.

