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Data Organization and Manifold Learning

There are many techniques for Data Organization and Manifold
Learning, e.g., Principal Component Analysis (PCA), Locally
Linear Embedding (LLE), Isomap, genetic algorithms, and neural
networks.
We are interested in a subfamily of these techniques known as
Kernel Eigenmap Methods. These include Kernel PCA, LLE,
Hessian LLE (HLLE), and Laplacian Eigenmaps.
Kernel eigenmap methods require two steps. Given data space
X of N vectors in RD.

1 Construction of an N × N symmetric, positive semi-definite kernel,
K , from these N data points in RD .

2 Diagonalization of K , and then choosing d ≤ D significant
eigenmaps of K . These become our new coordinates, and
accomplish dimensionality reduction.

We are particularly interested in diffusion kernels K , which are
defined by means of transition matrices.
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Kernel Eigenmap Methods for Dimension Reduction -
Kernel Construction

Kernel eigenmap methods were introduced to address
complexities not resolvable by linear methods.
The idea behind kernel methods is to express correlations or
similarities between vectors in the data space X in terms of a
symmetric, positive semi-definite kernel function K : X × X → R.
Generally, there exists a Hilbert space K and a mapping
Φ : X → K such that

K (x , y) = 〈Φ(x),Φ(y)〉.

Then, diagonalize by the spectral theorem and choose significant
eigenmaps to obtain dimensionality reduction.
Kernels can be constructed by many kernel eigenmap methods.
These include Kernel PCA, LLE, HLLE, and Laplacian
Eigenmaps.
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Kernel Eigenmap Methods for Dimension Reduction -
Kernel Diagonalization

The second step in kernel eigenmap methods is the
diagonalization of the kernel.
Let ej , j = 1, . . . ,N, be the set of eigenvectors of the kernel
matrix K , with eigenvalues λj .
Order the eigenvalues monotonically.
Choose the top d << D significant eigenvectors to map the
original data points xi ∈ RD to (e1(i), . . . ,ed (i)) ∈ Rd ,
i = 1, . . . ,N.
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Data Organization
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There are other alternative interpretations for the steps of our
diagram:

1 Constructions of kernels K may be independent from data and
based on principles.

2 Redundant representations, such as frames, can be used to
replace orthonormal eigendecompositions.

We need not select the target dimensionality to be lower than the
dimension of the input. This leads, to data expansion, or data
organization, rather then dimensionality reduction.

Wojciech Czaja and Brian Hunt Data-dependent and a priori representations



Lecture 11: Laplacian Eigenmaps

Operator Theory on Graphs

Presented approach leads to analysis of operators on
data-dependent structures, such as graphs or manifolds.
Locally Linear Embedding, Diffusion Maps, Diffusion Wavelets,
Laplacian Eigenmaps, Schroedinger Eigenmaps
Mathematical core:

Pick a positive semidefinite bounded operator A as the infinitesimal
generator of a semigroup of operators, etA, t > 0.
The semigroup can be identified with the Markov processes of
diffusion or random walks, as is the case, e.g., with Diffusion Maps
and Diffusion Wavelets
The infinitesimal generator and the semigroup share the common
representation, e.g., eigenbasis
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Laplacian Eigenmaps

M. Belkin and P. Niyogi, 2003.
Points close on the manifold should remain close in Rd .
Use Laplace-Beltrami operator ∆M to control the embedding.
Use discrete approximations for practical problems.
Proven convergence (Belkin and Niyogi, 2003 – 2008).
Gave rise to Diffusion Maps and Diffusion Wavelets, among
others.
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Laplacian Eigenmaps - Implementation

1 Put an edge between nodes i and j if xi and xj are close.
Precisely, given a parameter k ∈ N, put an edge between nodes i
and j if xi is among the k nearest neighbors of xj or vice versa.

2 Given a parameter t > 0, if nodes i and j are connected, set

Wi,j = e−
‖xi−xj‖

2

t .
3 Set Di,i =

∑
j Wi,j , and let L = D −W . Solve Lf = λDf , under the

constraint y>Dy = Id . Let f0, f1, . . . , fd be d + 1 eigenvector
solutions corresponding to the first eigenvalues
0 = λ0 ≤ λ1 ≤ · · · ≤ λd . Discard f0 and use the next d
eigenvectors to embed in d-dimensional Euclidean space using
the map xi → (f1(i), f2(i), . . . , fd (i)).
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Swiss Roll

Figure : a) Original, b) PCA, c–f) LE, J. Shen et al., Neurocomputing, Volume
87, 2012
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Swiss Roll

Figure : a) Original, b) LE

Wojciech Czaja and Brian Hunt Data-dependent and a priori representations



Lecture 11: Laplacian Eigenmaps

From eigenproblems to optimization

Consider the following minimization problem, y ∈ Rd ,

min
y>Dy=Id

1
2

∑
i,j

‖yi − yj‖2Wi,j = min
y>Dy=E

tr(y>Ly).

Its solution is given by the d minimal non-zero eigenvalue solutions of
Lf = λDf under the constraint y>Dy = Id .
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