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Abstract

We develop a simple model for the spread of an infectiousadis¢hat is limited in duration and is
not fatal. We first assume that when an infected person respo{@he becomes susceptible to being
infected again, but we also consider the case where some oétlovering people become immune to
the disease. We find in the first case that the prevalence ofitkase — the proportion of the population
that is infected at a given time — approaches a limiting valeisveern) and1 in the long run, and that
the predicted limiting value is very sensitive to errors ataltaken when the prevalence is small and
growing. In the latter case, we find that the prevalence offikease reaches a peak and then decays
toward zero; in the long run, a certain proportion of the pgafion has become immune and a certain
proportion remains susceptible.

1 Introduction

An “epidemic” occurs when an infectious disease that is mesvgopulation is introduced to that population
and spreads to a significant proportion of the populatione ppulation generally consists of people (or
other animals, such as livestock) in a certain geographrea, and the disease generally comes from contact
with a population in a different region. The purpose of modghn epidemic once an outbreak is detected
is both to predict how serious the epidemic will be, and tduata the effectiveness of various possible
responses to the epidemic.

An infectious disease is spread by contact between infemtelduninfected people, as opposed to a
hereditary disease. We will use a continuous-time modeddbaa approximating the flow of people between
different subgroups of the population — those who are iefiicthose who are susceptible to infection,
and those who are immune from infection. The continuous miedgrds the populations as continuous
variables, though in real life they are discrete (integadugd). This is reasonable as long as the population
is large, so that changing the status of a single individaiabi too significant.

Many epidemiological models divide the infected populatisto smaller subgroups based on how long
they have been infected or how their symptoms have progte3eekeep the model simple, we will not do
this. In particular, we do not attempt to model the facts thateople in different stages of the disease may
have markedly different degrees of infectiousness (gtdititspread the disease), that different people may
have different amounts of contact with others and diffedagrees of resistiveness to the disease, and that
recovery may take a certain period of time. We also do notitatheaccount that the population may modify



its behavior in response to the epidemic; once diagnosexhlg@evho are infected are likely to have their
contact with others limited. Finally, we assume that theeere “carriers” — people who are immune but
still carry the disease and can infect others.

We now spell out the main assumptions we make and introdcedtation we will use.

(i) The total population is large and constant in time.
(i) Ata given timet, the population can be divided into three groups:

e N(t), the proportion of people who are infected (the “prevalénéehe disease);
e S(t), the proportion of people who are susceptible; and

e M (t), the proportion of people who are immune.

(iii) Each infected person is equally likely to recover onigeg day, independent of how long (s)he has
been infected. Let be the probability per unit time that an infected individuatovers.

(iv) Each recovering person is equally likely to become imnto future infections, independent of how
many times (s)he has been infected before. ¢.be the probability that a recovering individual
becomes immune.

(v) For a given prevalencé(t), each susceptible person is equally likely to be infectecaayiven
day, and the likelihood is proportional f¥(¢). Let the probability per unit time that a susceptible
individual becomes infected BeV (t).

Let us discuss the rationale behind the last assumptiongiiraahat each susceptible person comes
into contact with the same number of people each day on awemyl the proportion of these people
who are infected is the same as the prevaleN¢e) in the entire population. If each contact between and
infected person and a susceptible person has an equal obfssreading the disease, thenepresents the
probability of catching the disease form a single contanes the average number of people contacted per
unit time. An underlying assumption here that the poputaisarelatively homogeneous; not only does each
person interact with others at about the same level, butethelh person is more or less equally likely to
interact with each other person.

In Section 2, we consider the case with no immunity. In thisecaur model is a single first-order
differential equation, and we are able to find an analytiotsmh depending o8 parameters. We show how
to determine these parameters fr8mata points, namely the prevalend&t) at3 different times. We also
express the long-term prevalence of the disease (the limi(@) ast — oo) in terms of the parameters.
Finally, we show by means of a specific example how small chairgthe data can have a substantial impact
on the predicted limit.

In Section 3, we allow for immunity, leading to a system2ofirst-order differential equations. We
study a few scenarios by solving this system numericallalliscenarios, we find that the prevalence of the
disease eventually decaystowhile the proportion of people who are immune grows but dedspproach
the entire population. Thus, according to our model at Jeagn though the disease dies out, part of the
population remains susceptible to a future outbreak. Iti@ed we discuss the results and conclusions we
draw from them.



2 Modd with no Immunity

If nobody can become immune to the disease, then in the antatiroduced above, we havwé(t) = ¢ =0

for all ¢. It follows that N (t) + S(¢t) = 1 for all ¢. In particular, we need only determine one of the two
functions N (t) and.S(t) since we can find the other function by subtracting fronit turns out that we get

a simpler differential equation fa¥ (¢), which we derive now.

Based on the large population assumption, we assume thatithieer of people who recover in a given
short time span is proportional to the current number ofciefé people, with the proportionality constant
beingr times the time span. Thus the rate of decreas¥ @§ due to recovery is N (¢). Similarly we model
the rate of increase d¥(¢) due to new infections asN (¢)S(t) = kN (t)(1 — N(t)). Thus our model for
this section is

%:—rN+kN(1—N):(k:—r—kN)N. 1)
(We will often write N instead ofN (t) for brevity.)

Before giving the general solution to this equation, let assider its equilibrium solutions. We have
dN/dt = 0 if either N = 0 or N = (k — r)/k. For the situation we are modeling, the only realistic
values of N are fromo0 to 1, so the latter equilibrium is only relevantif > r. In that casedN/dt > 0
if0 <N < (k—r)/kanddN/dt < 0if N > (k —r)/k, so thatN = 0 is an unstable equilibrium and
N = (k —r)/k is a stable equilibrium. Thus i¥ is positive, it will approach a limiting value ¢k — r)/k
ast — oo. If on the other hand < r, thendN/dt < 0 for all N > 0, so thatN decays td) ast — oc.

In this case the epidemic would never break out in the firsteglaince the rate at which people recover
exceeds the rate at which they can infect new people.

The general solution of equation (1)

k—r

= kT Cet P @)

N(t)

where(C' is a constant. (There is also the equilibrium solutigiit) = 0 for all ¢; this corresponds in a
manner of speaking to settiig = c.) If » > k, then forN(¢) to be positiveC' must be negative. Then the
denominator approachesoc ast — oo, and henceV (t) approache$ as we determined before. Af> r,
then the denominator of equation (2) approachest — oo, andN (t) approaches$k — r)/k. Again this
agrees with our earlier analysis.

From now on, we will assume that > r, so that an outbreak of the disease is possible=f 0 is
unstable). Several solution curves are shown in Figure th Wjipothetical values chosen fbrandr and
different curves corresponding to different value€of in essence, different initial conditions.

To determine the values of the parameters, andC appropriate to a given scenario, we need some
data. While we could attempt to measureand r directly if we had good data on new infections and
recoveries, we can also infer them if we just know the valué/adt 3 different times. By plugging these
times into equation (2), we g8tequations to solve for the unknown parameters. If we had less data, then
a variety of parameter values would fit the data perfectlg,\&@a would have no good basis to choose which
values to make predictions from. If we had more data, we wbaleé more equations than unknowns, and it
is unlikely that we could find values far, , andC' that exactly fit all of the data. Instead, we would find the
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Figure 1: Solutions to equation (1) with= 0.2 andr = 0.1, indicating the disease prevalence (according
to the model) as a function of time for various initial comutits.

values that “best” fit the data by some statistical critelisunch as least-square error). How well we could
fit the data would give us an idea of how realistic our model is.

To fit the data given in the problem statement, we ls¢ measured in years, with= 0 representing the
present time. Then the data are

N(—10) =0.002,  N(-=5)=0.008,  N(0) = 0.03.

From equation (2) we get

ko 002
k4 Cel0tk—r) — 7
k—r
Froern — 00
k—r
o = 00

Though these equations can be solved algebraically, thé@ois long and tedious. They can also be solved
numerically, by MATLAB for instance. The solution is

k~1036, r~0754, C =~ 8.356. ?3)

From this we obtain the long-term prevalence of the disease,

k —
N(oo) = krzomz
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Figure 2: Prevalence as a function of time f¥(—10) = 0.002, N(—5) = 0.008, and: [upper curve]
N(0) = 0.031; [middle curve] N (0) = 0.030; [lower curve] N (0) = 0.029.

That is, eventually aboul7% of the population will be infected at any given time. We enmpba that
this does not mean that the remainirg§s of the population never gets infected. Instead, Witk of the
population infected, the rate of new infections and the ohtecovery balance out, but the specific people
who are infected continues to change over time.

To assess the uncertainty in our prediction of the long-femeralence, suppose the uncertaintyMif0)
is0.001. Even without any uncertainty in the other data points, ffexeon our prediction is dramatic. If we
changeN (0) to 0.029 and follow the same procedure as above, weNgeto) ~ 0.176. And if we change
N(0) to 0.031, we getN (co) ~ 0.560. The solutions of our model in all cases are shown in Figure 2.

3 Mode with Immunity

Now assumey > 0, so thatM will be positive too. In this cas& + S + M = 1, so that if we know
any 2 of the populations at a given time, we know all Our derivation of the differential equation for
N(t) from the previous section still holds, except that we canamgér writeS(¢) = 1 — N(¢). That is,
dN/dt = —rN + kNS. We can augment this equation with a differential equatmmeftherS or M;
we chooseV/ because nobody can leave the immune population, leadingito@er equation. Of the N
people recovering per unit time, a proportipof them become immune, so the rate of chang&/at ¢r V.
Writing S =1 — N — M, we get our model for this section:

dN

= N HEN( =N —M)=(k—r—kN—kM)N



dM

dt
If ¢ = 1, this model is equivalent (though with a difference choitaaiation) to the SIR model formulated
by Kermack and McKendrick in 1927 [1] (see also [2]).

For this model to be in equilibrium, we must hate= 0 for dM /dt to be0, in which caseiN/dt = 0
too. Thus as long ag > 0, the population can only be in equilibrium when the prevedenf the disease
goes to0. This would not necessarily be the case in a more realistideiihat takes into account changes
in the population; we discuss this point further in the nexdt®n.

Having no data that will allow us to determimg let us consider various values gfalong with the
values ofk andr from equation (3) in the previous section. We usé0) = 0.03, and to determine a
somewhat realistic value fav/(0) we consider that in the distant past, nobody was immune, sshweld
haveM (—oo) = 0. Then

= gqrN.

0
M(0) = / grN(t)dt ~ 0.1128qr ~ 0.0851q.
[e.e]

Here we assumed that fé¥ is not much different than in the previous section for 0; in other words,
immunity has not has much effect dvi so far. (This should be reasonableyifs small, at least.) Then
we used the solution from the previous section, namely emué®?) with the values from equation (3), to
compute the integral oV.

Given the setup in the previous paragraphy i 0 then M (¢) = 0 for all ¢ and N (¢) is the same as
in the previous section (the middle curve in Figure 2). We poted solutions numerically fay = 0.01,

0.1, andl using MATLAB. The results are shown in Figures 3, 4, and 5.id¢othat the graphs cover very
different ranges of.

Wheng = 0.01, the prevalencéV grows to abou5%, nearly as high as when there was no immunity,
but then slowly decays towaitlover a period of several hundred years, while the propotiibof people
who become immune grows to abd&%. This slow time scale makes sense mathematically because on
average one has to get the dise@ge times before becoming immune. (Notice also that with a reppv
rate of abou5% per year, the lifetime of the disease is usually but not astegs than a year.) Of course
we are somewhat beyond the bounds of reality here, becaopéemon't actually live hundreds of years. It
would be vital to take into account changes in the populatiiih these parameters.

With ¢ = 0.1, the prevalenceéV grows to about 6% in 10 to 15 years and then decays more rapidly to
0. The proportionM of people who become immune approaches rought, more than in the previous
case but not radically more. With= 1, the prevalenceéV grows to aboutt.5% in about5 years and then
decays, with\/ approaching roughl$0%. The fact that\/ andS approach nearly equal values seems to be
a coincidence; it is not a consequence of setting 1 because it does not happen if we set different values
for the other parameters.

4 Discussion

Since we have used relatively simple models for the spreahdapidemic, we should consider to what
extent our results are a just property of the particular madd to what extent they may be expected to
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Figure 3: Graphs oN(¢) [solid line], M (t) [dashed line], and(¢) [dotted line] forg = 0.01.
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Figure 4: Graphs ol (t) [solid line], M (t) [dashed line], and (¢) [dotted line] forq = 0.1.
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Figure 5: Graphs oN (¢) [solid line], M (t) [dashed line], and(¢) [dotted line] forg = 1.

apply more generally.

In both cases (with and without immunity) we found that thevatence of the disease tends to an equi-
librium value in the long run. In real life many factors magpent such an equilibrium, most importantly
changes in behavior and in preventive care once the diseasbden identified, and ultimately perhaps a
vaccination or cure for the disease. However, relativel miiseases like chicken pox may indeed persist at
a more or less constant prevalence for a long time. On the btve, having chicken pox generally results
in immunity (¢ =~ 1) and the prevalence is not going to zero like the model ini®e& would predict. We
will discuss this discrepancy below.

Our main result in Section 2 was that the predicted limitingvplence can depend sensitively on the
data used to determine the parameters of the model. Thouglidwet do a general study of this effect,
we found that in at least one case, a small uncertainty inatadime when the prevalence of the disease is
small but growing rapidly can lead to a very large uncerjaintthe predicted long-term prevalence. This is
probably true of more sophisticated models as well.

In Section 3 we found that by allowing for immunity, we couldchglate an epidemic where the preva-
lence of the disease rises rapidly to affect a significantgreage of the population, then falls off in the
long run. As we suggested there, the fact that the prevalafiseoff to 0 may not be realistic for too many
diseases, but the fact that it can fall off @dn this model without having the entire population become
immune suggests that short-lived epidemics may be folldwefiirther outbreaks in the future. And as we
will show now, a modified version of the model from Section 8 &ad to a nonzero long-term prevalence
even with immunity by taking into account changes in the peipon.

To incorporate births and deaths into our model, we woulchdba the assumption that the total popu-



lation is fixed and letV, S, and M represent total populations rather than proportions (mez# is harder
to derive a differential equation for a quantity whose nuas@r and denominator are both changing). We
would end up with a system like

AN N1 ENS —dyN

dt

d

d_f — (1—q)rN — kNS — dgS + by N + bgS + by M
AM

M N —dyM

i qr MV,

where we have different birth ratés, bs, by, and death ratedy, dg, dy; for the different populations and
we assume nobody is born infected or immune. Probably itevbalbest to set some of these rates equal,
at leastg = b); anddg = djy, to reduce the number of parameters. To be more realistishaeld divide
the population into age groups, since birth and death ratg@sasceptibility to the disease will depend on
age.

We could handle immigration and emigration similarly, tghyprobably we would want to assume that
some of the immigrants are infected and/or immune. In ang,ocaih births and deaths and/or immigra-
tion and emigration it should be possible even with immumityhave an equilibrium without having the
prevalence of the disease decaytdecause now M /dt can be0 without havingN = 0. Actually, with
a growing population equilibrium would not requifd to be constant anyhow, rather the ratio/df to
the total population should remain constant, so thiatvould grow along with the population. From this
point of view, it would be impossible in fact for a growing pdation to have equilibrium witld/ > 0 and
N = 0; either bothM and N would have to go t® or both should remain positive.

Probably the most serious limitation in our model is that veated both the entire population and our
3 subgroups — infected, susceptible, and immune — as beingdwmeous. To be more realistic, we could
divide the infected population into subgroups based on stagfe of the disease they are in, as mentioned
in the introduction, and we could divide the population iag® groups, as mentioned above. We could also
divide the population by sex, race, geography, and any gffeamping we could think of that would affect
parameters like susceptibility to the disease, interaatédes with other groups, etc. Of course the model
could get very complicated then, and we might have more patensithan we could hope to estimate from
the available data. A reasonable approach would be to stdrtassimple model like those in this report,
see how well it fits the data, and then build additional faciato the model until (hopefully) a good fit is
achieved without having a ridiculous number of parameters.

Finally, another approach that might be of interest woulddomodel a heterogeneous population by
a computer simulation that keeps track of each individussigming each one certain characteristics for
sociability, susceptibility, etc., and using a random nendenerator to simulate chance interactions, infec-
tions, etc. This type of approach is sometimes called “agased” modeling and is becoming increasingly
popular and increasingly feasible with advances in commgeed and memory; see for instance [3].
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