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Optimization II: Model-Based Target Portfolios

We now address how to select a target portfolio that contains N risky as-
sets along with a risk-free safe investment and possibly a risk-free credit
line. Given the mean vector m, the covariance matrix V, and the risk-
free rates µsi and µcl, the idea is to select the portfolio distribution f that
maximizes an objective function of the form

Γ̂(f) = µ̂− 1
2σ̂

2 − χ σ̂ ,
where

µ̂ = µrf

(
1− 1Tf

)
+ mTf ,

σ̂ =
√
fTVf ,

µrf =

µsi for 1Tf < 1 ,

µcl for 1Tf > 1 .

Here χ = ζ/
√
T where ζ ≥ 0 is the risk aversion coefficient and T > 0

is a time horizon that is usually the time to the next portfolio rebalancing.
Both ζ and T are chosen by the investor.



Reduced Maximization Problem. Because frontier portfolios minimize σ̂
for a given value of µ̂, the optimal f clearly must be a frontier portfolio.
Because the optimal portfolio must also be more efficient than every other
portfolio with the same volatility, it must lie on the efficient frontier.

Recall that the efficient frontier is a curve µ = µef(σ) in the σµ-plane
given by an increasing, concave, continuous, piecewise differentiable func-
tion µef(σ) that is defined over [0,∞) for the unconstrained One Risk-
Free Rate and Two Risk-Free Rates models, and over [0, σmx] for the long
portfolio model. The problem thereby reduces to finding σ that maximizes

Γef(σ) = µef(σ)− 1
2σ

2 − χσ .

This function has the piecewise derivative Γ′ef(σ) = µ′ef(σ) − σ − χ.
Because µef(σ) is concave, Γ′ef(σ) is strictly decreasing.



Because Γ′ef(σ) is strictly decreasing, there are three possibilities.

• Γef(σ) takes its maximum at σ = 0, the left endpoint of its interval of
definition. This case arises whenever Γ′ef(0) ≤ 0.

• Γef(σ) takes its maximum in the interior of its interval of definition
at the unique point σ = σopt where Γ′ef(σ) = µ′ef(σ) − σ − χ

changes sign. This case arises for the unconstrained models when-
ever Γ′ef(0) > 0, and for the long portfolio model whenever Γ′ef(σmx) <
0 < Γ′ef(0).

• Γef(σ) takes its maximum at σ = σmx, the right endpoint of its in-
terval of definition. This case arises only for the long portfolio model
whenever Γ′ef(σmx) ≥ 0.



This reduced maximization problem can be visualized by considering the
family of parabolas parameterized by Γ as

µ = Γ + χσ + 1
2σ

2 .

As Γ varies the graph of this parabola shifts up and down in the σµ-plane.
For some values of Γ the corresponding parabola will intersect the efficient
frontier, which is given by µ = µef(σ). There is clearly a maximum such Γ.
As the parabola is strictly convex while the efficient frontier is concave, for
this maximum Γ the intersection will consist of a single point (σopt, µopt).
Then σ = σopt is the maximizer of Γef(σ).

This reduction is appealing because the efficient frontier only depends on
general information about an investor, like whether he or she will take short
positions. Once it is computed, the problem of maximizing any given Γ̂(f)
over all admissible portfolios f reduces to the problem of maximizing the
associated Γef(σ) over all admissible σ — a problem over one variable.



In summary, our approach to portfolio selection has three steps:

1. Choose a return rate history over a given period (say the past year)
and calibrate the mean vector m and the covariance matrix V with it.

2. Given m, V, µsi, µcl, and any portfolio constraints, compute µef(σ).

3. Finally, choose χ = ζ/
√
T and maximize the associated Γef(σ); the

maximizer σopt corresponds to a unique efficient frontier portfolio.

Below we will illustrate the last step on some models we have developed.



One Risk-Free Rate Model. This is the easiest model to analyze. You
first compute σmv, µmv, and νas from the return rate history. The model
assumes that µsi = µcl < µmv. Then its tangency parameters are

νtg = νas

√√√√1 +

(
µmv − µrf

νas σmv

)2

, σtg = σmv

√√√√1 +

(
νas σmv

µmv − µrf

)2

,

where µrf = µsi = µcl, while its efficient frontier is

µef(σ) = µrf + νtg σ for σ ∈ [0,∞) .

Because Γef(σ) = µef(σ)− 1
2σ

2 − χσ, we have

Γ′ef(σ) = νtg − σ − χ .
When χ ≥ νtg we see that Γ′ef(0) = νtg − χ ≤ 0, whereby σopt = 0,
while when χ < νtg there is a positive solution of Γ′ef(σ) = 0. We obtain

σopt =

0 if νtg ≤ χ ,
νtg − χ if χ < νtg .



The optimal return rate µopt = µef(σopt) is expressed in terms of the
return rate µtg of the tangency portfolio and the risk-free rate µrf as

µopt =

1−
σopt

σtg

µrf +
σopt

σtg
µtg ,

where

µtg = µmv +
ν 2

as σ
2
mv

µmv − µrf

.

The optimal efficient frontier portfolio has the distribution fopt = fef(σopt)

which is expressed in terms of the tangency portfolio ftg as

fopt =
σopt

σtg
ftg , where ftg =

σ 2
mv

µmv − µrf

V−1
(
m− µrf1

)
.



It follows from the distribution fopt that the optimal efficient frontier portfolio
can be built from the tangency portfolio ftg and the risk-free assets as
follows. There are four possibilities:

1. If σopt = 0 then the investor will hold only the safe investment.

2. If σopt ∈ (0, σtg) then the investor will place

σtg − σopt

σtg
of the portfolio value in the safe investment ,

σopt

σtg
of the portfolio value in the tangency portfolio ftg .

3. If σopt = σtg then the investor will hold only the tangency portfolio ftg.



4. If σopt ∈ (σtg,∞) then the investor will place

σopt

σtg
of the portfolio value in the tangency portfolio ftg ,

by borrowing
σopt − σtg

σtg
of this value from the credit line .

In order to see which of these four cases arises as a function of µrf , we
must compare νtg with χ and σopt = νtg−χ with σtg. Because νtg > νas,
the condition χ ≥ νtg cannot be met unless χ > νas, in which case it can
be expressed as µrf ≥ ηex(χ) where

ηex(χ) =

µmv if χ ≤ νas ,

µmv − σmv

√
χ2 − ν 2

as if χ > νas .

This is called the exit rate for the investor because when µrf ≥ ηex(χ) the
investor is likely to sell all of his or her risky assets.



In order to compare νtg− χ with σtg, notice that νtg− χ = σtg whenever
µ = µrf solves the equation

νas

√√√√1 +

(
µmv − µ
νas σmv

)2

− σmv

√√√√1 +

(
νas σmv

µmv − µ

)2

= χ .

The left-hand side of this equation is a strictly decreasing function of µ over
the interval (−∞, µmv) that maps onto R. Let µ = ηtg(χ) be the unique
solution of this equation in (−∞, µmv). Then because σopt = νtg−χ, we
see that the four cases arise as follows

σopt = 0 if and only if ηex(χ) ≤ µrf ,

σopt ∈ (0, σtg) if and only if ηtg(χ) < µrf < ηex(χ) ,

σopt = σtg if and only if µrf = ηtg(χ) ,

σopt ∈ (σtg,∞) if and only if µrf < ηtg(χ) .

Notice that if χ ≤ νas then ηex(χ) = µmv, so the first case does not arise.



In particular, when χ = 0 the first case does not arise, while µ = ηtg(0)
is the solution of

νas

√√√√1 +

(
µmv − µ
νas σmv

)2

− σmv

√√√√1 +

(
νas σmv

µmv − µ

)2

= 0 .

This can be solved explicitly to find that

ηtg(0) = µmv − σ 2
mv .

Therefore the three remaining cases arise as follows:

σopt ∈ (0, σtg) if and only if µmv − σ 2
mv < µrf ,

σopt = σtg if and only if µrf = µmv − σ 2
mv ,

σopt ∈ (σtg,∞) if and only if µrf < µmv − σ 2
mv .

Specifically, when χ = 0 we have

σopt = νtg , µopt = µrf + ν 2
tg , γopt = µrf + 1

2ν
2
tg .



Two Risk-Free Rates Model. This is the next easiest model to analyze.
We first compute σmv, µmv, and νas from the return rate history. The
model assumes that µsi < µcl < µmv. Then its tangency parameters are

νst = νas

√√√√1 +

(
µmv − µsi

νas σmv

)2

, σst = σmv

√√√√1 +

(
νas σmv

µmv − µsi

)2

,

νct = νas

√√√√1 +

(
µmv − µcl

νas σmv

)2

, σct = σmv

√√√√1 +

(
νas σmv

µmv − µcl

)2

,

while its efficient frontier is

µef(σ) =


µsi + νst σ for σ ∈ [0, σst] ,

µmv + νas

√
σ2 − σ 2

mv for σ ∈ [σst, σct] ,

µcl + νct σ for σ ∈ [σct,∞) .



Because Γef(σ) = µef(σ)− 1
2σ

2 − χσ, we have

Γ′ef(σ) =


νst − σ − χ for σ ∈ [0, σst] ,

νas σ√
σ2 − σ 2

mv

− σ − χ for σ ∈ [σst, σct] ,

νct − σ − χ for σ ∈ [σct,∞) .

When χ ≥ νtg we see that Γ′ef(0) = νtg − χ ≤ 0, whereby σopt = 0,
while when χ < νtg there is a positive solution of Γ′ef(σ) = 0. We obtain

σopt =


0 if νst ≤ χ ,
νst − χ if νst − σst ≤ χ < νst ,

σq(χ) if νct − σct ≤ χ < νst − σst ,

νct − χ if χ < νct − σct ,

where σ = σq(χ) ∈ [σst, σct] solves the quartic equation

ν 2
as σ

2 =
(
σ2 − σ 2

mv

)
(σ + χ)2 .



The optimal return rate µopt = µef(σopt) is expressed in terms of the
return rate µst of the safe tangency portfolio, the return rate µct of the
credit tangency portfolio, and the risk-free rates µsi and µcl as

µopt =



(
1−

σopt

σst

)
µsi +

σopt

σst
µst for σopt ∈ [0, σst] ,

µmv + νas

√
σ 2
opt − σ

2
mv for σopt ∈ (σst, σct) ,(

1−
σopt

σct

)
µcl +

σopt

σct
µct for σopt ∈ [σct,∞) ,

where

µst = µmv +
ν 2

as σ
2
mv

µmv − µsi

, µct = µmv +
ν 2

as σ
2
mv

µmv − µcl

.



The optimal efficient frontier portfolio has the distribution fopt = fef(σopt)

which is expressed in terms of the safe tangency portfolio fst and the credit
tangency portfolio fct as

fopt =



σopt

σst
fst for σopt ∈ [0, σst] ,

µct − µopt

µct − µst
fst +

µopt − µst

µct − µst
fct for σopt ∈ (σst, σct) ,

σopt

σct
fct for σopt ∈ [σct,∞) ,

where

fst =
σ 2

mv

µmv − µsi

V−1
(
m− µsi1

)
, fct =

σ 2
mv

µmv − µcl

V−1
(
m− µcl1

)
.



The optimal efficient frontier portfolio is constructed from the safe tangency
portfolio fst, the credit tangency portfolio fct, and the risk-free assets as
follows. There are six possibilities:

1. If σopt = 0 then the investor will hold only the safe investment.

2. If σopt ∈ (0, σst) then the investor places

σst − σopt

σst
of the portfolio value in the safe investment,

σopt

σst
of the portfolio value in the safe tangency portfolio fst.

3. If σopt = σst then the investor holds only the safe tangency portfolio fst.



4. If σopt ∈ (σst, σct) then the investor places

µct − µopt

µct − µst
of the portfolio value in the safe tangency portfolio fst,

µopt − µst

µct − µst
of the portfolio value in the credit tangency portfolio fct.

5. If σopt = σct then the investor holds the credit tangency portfolio fct.

6. If σopt ∈ (σct,∞) then the investor places

σopt

σct
of the portfolio value in the credit tangency portfolio fct,

by borrowing
σopt − σct

σct
of this value from the credit line.



Because ηex(χ) and ηtg(χ) where defined so that

χ = νst if and only if ηex(χ) = µsi ,

χ = νst − σst if and only if ηtg(χ) = µsi ,

χ = νct − σct if and only if ηtg(χ) = µcl ,

the six cases arise as a function of µsi and µcl as follows:

σopt = 0 if and only if ηex(χ) ≤ µsi < µcl ,

σopt ∈ (0, σst) if and only if ηtg(χ) < µsi < ηex(χ) ,

σopt = σst if and only if µsi = ηtg(χ) < µcl ,

σopt ∈ (σst, σct) if and only if µsi < ηtg(χ) < µcl ,

σopt = σct if and only if µsi < µcl = ηtg(χ) ,

σopt ∈ (σct,∞) if and only if µsi < µcl < ηtg(χ) .

Notice that if χ ≤ νas then ηex(χ) = µmv, so the first case does not arise.



In particular, when χ = 0 the first case does not arise. Because

ηtg(0) = µmv − σ 2
mv ,

the five remaining cases arise as follows:

σopt ∈ (0, σst) if and only if µmv − σ 2
mv < µsi < µcl ,

σopt = σst if and only if µsi = µmv − σ 2
mv < µcl ,

σopt ∈ (σst, σct) if and only if µsi < µmv − σ 2
mv < µcl ,

σopt = σct if and only if µsi < µcl = µmv − σ 2
mv ,

σopt ∈ (σct,∞) if and only if µsi < µcl < µmv − σ 2
mv .

Moreover, because σ = σq(0) is the solution of

ν 2
asσ

2 =
(
σ2 − σ 2

mv

)
σ2 ,

we find that

σq(0) =
√
σ 2

mv + ν 2
as .



Specifically, when χ = 0 we have

σopt =


νst for µmv − σ 2

mv ≤ µsi ,√
σ 2

mv + ν 2
as for µsi < µmv − σ 2

mv < µcl ,

νct for µcl ≤ µmv − σ 2
mv ,

µopt =


µsi + ν 2

st for µmv − σ 2
mv ≤ µsi ,

µmv + ν 2
as for µsi < µmv − σ 2

mv < µcl ,

µcl + ν 2
ct for µcl ≤ µmv − σ 2

mv ,

γopt =


µsi + 1

2ν
2
st for µmv − σ 2

mv ≤ µsi ,

γmv + 1
2ν

2
as for µsi < µmv − σ 2

mv < µcl ,

µcl + 1
2ν

2
ct for µcl ≤ µmv − σ 2

mv ,

where γmv = µmv − 1
2σ

2
mv is the expected growth rate of the minimum

volatility portfolio.



Long Portfolio Model. This is the most complicated model that we will
analyze. We first compute σmv, µmv, and νas from the return rate history.

We then construct the efficient branch of the long frontier. We saw how to
do this by an iterative construction whenever ff(µ0) ≥ 0 for some µ0. Here
we will assume that fmv ≥ 0 and set µ0 = µmv. In that case we found that
σlf(µ) is a piecewise differentiable function over [µmv, µmx] that is given
by a list in the form

σlf(µ) = σfk
(µ) ≡

√√√√σ 2
mvk +

(
µ− µmvk

νask

)2

for µ ∈ [µk, µk+1] ,

where σmvk, µmvk, and νask are the frontier parameters associated with
the vector mk and matrix Vk that determined σ

fk
(µ) in the kth step of our

construction. In particular, σmv0
= σmv, µmv0

= µmv, and νas0
= νas

because m0 = m and V0 = V.



Next, we construct the continuously differentiable function µef(σ) over
[0, σmx] that determines the efficient frontier given the return rate µsi of
the safe investment. The form of this construction depends upon the tan-
gent line to the curve σ = σlf(µ) at the point (σmx, µmx). This tangent
line has µ-intercept ηmx and slope νmx given by

ηmx = µmx −
σlf(µmx)

σ′lf(µmx)
, νmx =

1

σ′lf(µmx)
.

These parameters are related by

νmx =
µmx − ηmx

σmx
.

The cases µsi ≥ ηmx and µsi < ηmx are considered separately.



Case µsi ≥ ηmx. Here the efficient long frontier is simply determined by

µef(σ) = µsi + νef σ for σ ∈ [0, σmx] ,

where the slope of this linear function is given by

νef =
µmx − µsi

σmx
.

Notice that µsi ≥ ηmx if and only if νef ≤ νmx.

Because Γef(σ) = µef(σ)− 1
2σ

2 − χσ,

Γ′ef(σ) = νef − σ − χ for σ ∈ [0, σmx] .

We therefore find that

σopt =


0 if νef ≤ χ ,
νef − χ if νef − σmx ≤ χ < νef ,

σmx if χ < νef − σmx .



Case µsi < ηmx. In this case there is a tangent line with µ-intercept µsi.
The tangent line to the long frontier at the point (σk, µk) has µ-intercept
ηk and slope νk given by

ηk = µmvk −
ν 2

askσ
2
mvk

µk − µmvk

, νk =
ν 2

askσk
µk − µmvk

.

If we set η0 = −∞ then for every µsi < ηmx there is a unique j such that

ηj ≤ µsi < ηj+1 .

For this value of j we have the tangancy parameters

νst = νasj

√√√√√1 +

(
µmvj − µsi

νasj σmvj

)2

, σst = σmvj

√√√√√1 +

(
νasj σmvj

µmvj − µsi

)2

.



Therefore when µsi < ηmx the efficient long frontier is given by

µef(σ) =


µsi + νst σ for σ ∈ [0, σst] ,

µmvj + νasj

√
σ2 − σ 2

mvj for σ ∈ [σst, σj+1] ,

µmvk + νask

√
σ2 − σ 2

mvk for σ ∈ [σk, σk+1] and k > j .

Because Γef(σ) = µef(σ)− 1
2σ

2 − χσ,

Γ′ef(σ) =



νst − σ − χ for σ ∈ [0, σst] ,

νasj σ√
σ2 − σ 2

mvj

− σ − χ for σ ∈ [σst, σj+1] ,

νask σ√
σ2 − σ 2

mvk

− σ − χ for σ ∈ [σk, σk+1] and k > j .

The last case in the above formulas can arise only when σj+1 < σmx.



Therefore we find that

σopt =



0 if νst ≤ χ ,
νst − χ if νst − σst ≤ χ < νst ,

σqj(χ) if νj+1 − σj+1 ≤ χ < νst − σst ,

σqk(χ) if νk+1 − σk+1 ≤ χ < νk − σk ,
σmx if χ < νmx − σmx ,

where σ = σqk(χ) ∈ [σk, σk+1] solves the quartic equation

ν 2
ask σ

2 =
(
σ2 − σ 2

mvk

)
(σ + χ)2 .

The fourth case can arise only when σj+1 < σmx.

Remark. The tasks of finding expressions for µopt, γopt, and fopt for the
long portfolio model is left as an exercise.



Remark. The foregoing solutions illustrate two basic principles of investing.

When the market is bad it is often in the regime µsi ≥ ηmx. In that case
the above solution gives an optimal long portfolio that is placed largely in
the safe investment, but the part of the portfolio placed in risky assets is
placed in the most agressive risky assets. Such a position allows you to
catch market upturns while putting little at risk when the market goes down.

When the market is good it is often in the regime µsi < ηmx. In that case
the above solution gives an optimal long portfolio that is placed largely in
risky assets, but much of it is not placed in the most agressive risky assets.
Such a position protects you from market downturns while giving up little
in returns when the market goes up.

Many investors will ignore these basic principles and become either overly
conservative in a bear market or overly aggressive in a bull market.



Exercise. Consider the following groups of assets:

(a) Google, Microsoft, Exxon-Mobil, UPS, GE, and Ford stock in 2009;

(b) Google, Microsoft, Exxon-Mobil, UPS, GE, and Ford stock in 2007;

(c) S&P 500 and Russell 1000 and 2000 index funds in 2009;

(d) S&P 500 and Russell 1000 and 2000 index funds in 2007.

Assume that µsi is the US Treasury Bill rate at the end of the given year,
and the µcl is three percentage points higher. Assume you are an investor
who chooses χ = 0. Design the optimal portfolios with risky assets drawn
from group (a), from group (c), and from groups (a) and (c) combined. Do
the same for group (b), group (d), and groups (b) and (d) combined. How
well did these optimal portfolios actually do over the subsequent year?

Exercise. Repeat the above exercise for an investor who chooses χ = 1.
Compare these optimal portfolios with the corresponding ones from the
previous exercise.


