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Stochastic Models III: Growth Rates for Portfolios

The idea now is to treat the Markowitz portfolio associated with f as a
single risky asset that can be modeled by the IID process associated with
the growth rate probability density pf(X) given by

pf(X) = qf

(
D

(
e
1
DX − 1

))
e
1
DX .

The mean γ and variance θ of X are given by

γ =
∫
X pf(X) dX , θ =

∫
(X − γ)2pf(X) dX .

We know from our study of one risky asset that γ is a good proxy for reward,
while

√
1
Dθ is a good proxy for risk. Therefore we would like to estimate γ

and θ in terms of the estimators µ̂ and ξ̂ that we studied last time.



Moment and Cumulant Generating Functions. Estimators for γ and θ
will be constructed from the positive function

M(τ) = Ex
(
eτX

)
=
∫
eτX pf(X) dX .

We will assumeM(τ) is defined for every τ in an open interval (τmn, τmx)

that contains the interval [0, 2D]. It can then be shown thatM(τ) is infinitely
differentiable over (τmn, τmx) with

M(m)(τ) = Ex
(
Xm eτX

)
=
∫
Xm eτX pf(X) dX .

We call M(τ) the moment generating function for X because, by setting
τ = 0 in the above expression, we see that the moments {Ex(Xm)}∞m=1
are generated from M(τ) by the formula

Ex
(
Xm

)
=
∫
Xmpf(X) dX =M(m)(0) .



A related inifinitely differentiable function over (τmn, τmx) is

K(τ) = log(M(τ)) = log
(
Ex
(
eτX

))
.

We call K(τ) the cumulant generating function because the cumulants
{κm}∞m=1 of X are generated by the formula κm = K(m)(0). Because

K′(τ) =
Ex
(
X eτX

)
Ex
(
eτX

) ,

K′′(τ) =
Ex
(
(X −K′(τ))2eτX

)
Ex
(
eτX

) ,

K′′′(τ) =
Ex
(
(X −K′(τ))3eτX

)
Ex
(
eτX

) ,

K′′′′(τ) =
Ex
(
(X −K′(τ))4eτX

)
Ex
(
eτX

) − 3K′′(τ)2 ,



we see that the first four cumulants of X are

κ1 = K′(0) = Ex(X) = γ ,

κ2 = K′′(0) = Ex
(
(X − γ)2

)
= θ ,

κ3 = K′′′(0) = Ex
(
(X − γ)3

)
,

κ4 = K′′′′(0) = Ex
(
(X − γ)4

)
− 3θ2 .

We call these respectively the mean, variance, skewness, and kurtosis.
The skewness measures asymmetry in the tails of the distribution. It is
positive or negative depending on whether the fatter tail is to the right or
left respectively. The kurtosis measures a relationship between the tails
and the center of the distribution. It is greater for distributions with greater
weight in the tails than in the center.

Remark. It should be evident from the formulas on the previous slide that
K′(τ), K′′(τ), K′′′(τ), and K′′′′(τ) are the mean, variance, skewness,
and kurtosis for the probability density eτXpf(X)/Ex(eτX).



Remark. If X is normally distributed with mean γ and variance θ then

pf(X) =
1√
2πθ

exp

(
−
(X − γ)2

2θ

)
.

A direct calculation then shows that

Ex
(
eτX

)
=

1√
2πθ

∫
exp

(
−
(X − γ)2

2θ
+ τX

)
dX

=
1√
2πθ

∫
exp

(
−
(X − γ − τθ)2

2θ
+ τγ + 1

2τ
2θ

)
dX

= exp
(
τγ + 1

2τ
2θ
)
,

Therefore K(τ) = log(Ex(eτX)) = τγ + 1
2τ

2θ. This shows that when
X is normally distributed the skewness, kurtosis, and all other higher-order
cumulants vanish. Conversely, if all these higher-order cumulants vanish
then X is normally distributed.



Remark. The cumulent generating function K(τ) is strictly convex over
the interval (τmn, τmx) because K′′(τ) > 0.

Remark. We can also see thatK(τ) is convex over (τmn, τmx) as follows.
Let τ0, τ1 ∈ (τmn, τmx). By applying the Hölder inequality with p = 1

1−s
and p∗ = 1

s , we see that for every s ∈ (0,1) we have

M
(
(1− s)τ0 + sτ1)

)
=
∫
e(1−s)τ0X esτ1X pf(X) dX

≤
(∫

eτ0Xpf(X) dX
)1−s (∫

eτ1Xpf(X) dX
)s

=M(τ0)
1−sM(τ1)

s .

By taking the logarithm of this inequality we obtain

K((1− s)τ0 + sτ1) ≤ (1− s)K(τ0) + sK(τ1) for every s ∈ (0,1) .

Therefore K(τ) is a convex function over (τmn, τmx).



Estimators for Growth Rate Mean and Variance. We will now construct
estimators for γ and θ by using the moment generating function

M(τ) = Ex
(
eτX

)
.

Because R = D(e
1
DX − 1) and Ex(e

1
DX) =M( 1

D), we have

µ = Ex(R) = D
(
M( 1

D)− 1
)
.

Because R− µ = D

(
e
1
DX −M( 1

D)
)

and Ex(e
2
DX) =M( 2

D), we have

ξ = Ex
(
(R− µ)2

)
= D2

(
M( 2

D)−M( 1
D)2

)
.

These equations can be solved for M( 1
D) and M( 2

D) as

M( 1
D) = 1+

µ

D
, M( 2

D) =
(
1+

µ

D

)2
+

ξ

D2
.

Therefore knowing µ and ξ is equivalent to knowing M( 1
D) and M( 2

D).



Because Ex(X) =M ′(0) and Ex(X2) =M ′′(0), we see that

γ = Ex(X) =M ′(0) ,

θ = Ex
(
(X − γ)2

)
= Ex

(
X2

)
− γ2 =M ′′(0)−M ′(0)2 .

Because M(0) = 1, we construct an estimator of M(τ) by interpolating
the values M(0), M( 1

D), and M( 2
D) with a quadratic polynomial as

M̂(τ) = 1+ τD
(
M( 1

D)− 1
)
+ τ

(
τ − 1

D

)
D2

2

(
M( 2

D)− 2M( 1
D) + 1

)
= 1+ τµ+ 1

2τ
(
τ − 1

D

) (
µ2 + ξ

)
.

By direct calculation we see that

M̂ ′(0) = µ− 1
2D(µ2 + ξ) , M̂ ′′(0) = µ2 + ξ .

We then construct estimators γ̂ and θ̂ as functions of µ and ξ by

γ̂ = M̂ ′(0)

= µ− 1
2D(µ2 + ξ) ,

θ̂ = M̂ ′′(0)− M̂ ′(0)2

= µ2 + ξ −
(
µ− 1

2D(µ2 + ξ)
)2
.



By replacing the µ and ξ that appear in the foregoing estimators for γ̂ and θ̂
with the estimators µ̂ = µrf(1− 1Tf)+mTf and ξ̂ = D fTVf , we obtain
the new estimators

γ̂ = µ̂− 1
2f

TVf − 1
2Dµ̂

2 ,

θ̂ = µ̂2 +D fTVf −
(
µ̂− 1

2f
TVf − 1

2Dµ̂
2
)2

.

Finally, if we assume D is large in the sense that∣∣∣∣ µ̂D
∣∣∣∣� 1 ,

∣∣∣∣∣fTVf

D

∣∣∣∣∣� 1 ,

then, by keeping the leading order of each term, we arrive at the estimators

γ̂ = µrf

(
1− 1Tf

)
+mTf − 1

2f
TVf ,

θ̂

D
= fTVf .

The error of this last approximation can be examined by simply comparing
the result of these estimators with that of those at the top of this page.



Remark. The estimators γ̂ and θ̂ given above have at least three potential
sources of error:

• the “large D” approximation made at the bottom of the previous page,

• the estimators M̂ ′(0) and M̂ ′′(0) as functions of µ and ξ,

• the estimators µ̂ and ξ̂ used to approximate µ and ξ.

These approximations all assume that the return rate distribution for each
Markowitz portfolio is described by a density qf(R) that is narrow enough
for some moment beyond the second to exist. All of these approximations
should be examined carefully, especially when markets are highly volatile.
The first was examined at the bottom of the last slide. The second will be
examined in the next section. The third was examined last time.



We now give an alternative derivation of these estimators that uses the
cumulent generating function K(τ) = log(M(τ)) and is based on the
fact that γ = K′(0) and θ = K′′(0). It begins by observing that

K( 1
D) = log

(
M( 1

D)
)
= log

(
1+

µ

D

)
,

K( 2
D) = log

(
M( 2

D)
)
= log

((
1+

µ

D

)2
+

ξ

D2

)
.

Therefore knowing µ and ξ is equivalent to knowing K( 1
D) and K( 2

D).

Because K(0) = 0, we construct an estimator of K(τ) by interpolating
the values K(0), K( 1

D), and K( 2
D) with a quadratic polynomial as

K̂(τ) = τDK( 1
D) + τ

(
τ − 1

D

)
D2

2

(
K( 2

D)− 2K( 1
D)
)

= τD log
(
1+

µ

D

)
+ τ

(
τ − 1

D

)
D2

2 log

(
1+

ξ

(D+ µ)2

)
.



This yields the estimators

γ̂ = K̂′(0) = D log
(
1+

µ

D

)
− 1

2D log

(
1+

ξ

(D+ µ)2

)
,

θ̂ = K̂′′(0) = D2 log

(
1+

ξ

(D+ µ)2

)
.

By replacing the µ and ξ that appear in the above estimators for γ̂ and θ̂
with the estimators µ̂ = µrf(1− 1Tf)+mTf and ξ̂ = D fTVf , we obtain
the new estimators

γ̂ = D log
(
1+

µ̂

D

)
− 1

2D log

(
1+

D fTVf

(D+ µ̂)2

)
,

θ̂ = D2 log

(
1+

D fTVf

(D+ µ̂)2

)
.



Finally, if we assume D is large in the sense that∣∣∣∣ µ̂D
∣∣∣∣� 1 ,

∣∣∣∣∣fTVf

D

∣∣∣∣∣� 1 ,

then, by keeping the leading order of each term, we arrive at the estimators

γ̂ = µrf

(
1− 1Tf

)
+mTf − 1

2f
TVf , θ̂ = DfTVf .

Remark. These are the same estimators that we obtained from our first
derivation. The fact that both derivations lead to the same result gives us
greater confidence in the validity of these estimators in the large D regime.

Remark. If the Markowitz portfolio specified by f has growth rates X that
are normally distributed with mean γ and variance θ then we have seen
that K(τ) = τγ + 1

2τ
2θ. In this case we have K̂(τ) = K(τ), so the

estimators γ̂ = K̂′(0) and θ̂ = K̂′′(0) are exact.



Uncertainty in the Interpolation Estimators. Here we examine the errors
of the interpolation-based estimators given by

M̂ ′(0) = D
(
2
(
M( 1

D)− 1
)
− 1

2

(
M( 2

D)− 1
))
,

M̂ ′′(0) = D2
(
M( 2

D)− 2M( 1
D) + 1

)
.

Let M(τ) be any thrice continuously differentiable function over [0, 2D] that
satisfies M(0) = 1. The Cauchy form of the Taylor remainder then yields

M( 1
D) = 1+ 1

DM
′(0) + 1

2D2M
′′(0) + 1

2

∫ 1
D

0

(
1
D − s

)2
M ′′′(s) ds ,

M( 2
D) = 1+ 2

DM
′(0) + 2

D2M
′′(0) + 1

2

∫ 2
D

0

(
2
D − s

)2
M ′′′(s) ds .

By placing these into the above formulas for M̂ ′(0) and M̂ ′′(0) we obtain

M̂ ′(0) =M ′(0) + E1 , M̂ ′′(0) =M ′′(0) + E2 ,



where the errors E1 and E2 are given by

E1 = D

[ ∫ 1
D

0

(
1
D − s

)2
M ′′′(s) ds− 1

4

∫ 2
D

0

(
2
D − s

)2
M ′′′(s) ds

]

= −D
[ ∫ 1

D

0

(
1
Ds−

3
4s

2
)
M ′′′(s) ds+ 1

4

∫ 2
D
1
D

(
2
D − s

)2
M ′′′(s) ds

]
,

E2 = D2
[
1
2

∫ 2
D

0

(
2
D − s

)2
M ′′′(s) ds−

∫ 1
D

0

(
1
D − s

)2
M ′′′(s) ds

]

= D2
[
1
2

∫ 2
D
1
D

(
2
D − s

)2
M ′′′(s) ds+

∫ 1
D

0

(
1
D2 − 1

2s
2
)
M ′′′(s) ds

]
.

Here the integrals seen in the second expression for each error are written
so that the factor multiplying M ′′′(s) inside each integral is nonnegative.
This shows that if M ′′′(s) ≥ 0 over [0, 2D] then E1 < 0 and E2 > 0, while
if M ′′′(s) ≤ 0 over [0, 2D] then E1 > 0 and E2 < 0.



The errors E1 and E2 may be bounded in terms of

‖M ′′′‖∞ = max
{
|M ′′′(τ)| : τ ∈ [0, 2D]

}
.

Specifically, because

∫ 1
D

0

(
1
Ds−

3
4s

2
)
ds = 1

4D3 ,
∫ 2
D
1
D

(
2
D − s

)2
ds = 1

3D3 ,

∫ 1
D

0

(
1
D2 − 1

2s
2
)
ds = 5

6D3 ,

we obtain the bounds

|E1| ≤ 1
3D2‖M ′′′‖∞ , |E2| ≤ 1

D‖M
′′′‖∞ .

This shows that the estimators M̂ ′(0) and M̂ ′′(0) have errors that are
O( 1

D2) and O( 1
D) respectively.



If we want to use these error bounds then we must find either a bound of
or an approximation to ‖M ′′′‖∞. From the definition of M(τ) we see that

M ′′′(τ) = Ex
(
X3eτX

)
=
∫
X3eτXpf(X) dX .

Because

M ′′′′(τ) = Ex
(
X4eτX

)
=
∫
X4eτXpf(X) dX > 0 ,

we see that M ′′′(τ) is a strictly increasing function of τ . Therefore

‖M ′′′‖∞ = max
{
−M ′′′(0) , M ′′′( 2

D)
}
,

where the quantities M ′′′(0) and M ′′′( 2
D) can be expressed in terms of

the return rate density as

M ′′′(0) =
∫ ∞
−D

(
D log

(
1+ 1

DR
))3

qf(R) dR ,

M ′′′( 2
D) =

∫ ∞
−D

(
D log

(
1+ 1

DR
))3 (

1+ 1
DR

)2
qf(R) dR .



These quantities can be approximated by the sample means

M̃ ′′′(0) =
Dh∑
d=1

w(d)
(
D log

(
1+ 1

Dr(d)
))3

,

M̃ ′′′( 2
D) =

Dh∑
d=1

w(d)
(
D log

(
1+ 1

Dr(d)
))3 (

1+ 1
Dr(d)

)2
,

where {r(d)}Dhd=1 is the portfolio return rate history given by

r(d) = (1− 1Tf)µrf + fTr(d) .

By arguing as we did for M ′′′(τ), we can show that M̃ ′′′(0) < M̃ ′′′( 2
D).

Therefore we can approximate ‖M ′′′‖∞ by

‖M ′′′‖∞ ≈ max
{
− M̃ ′′′(0) , M̃ ′′′( 2

D)
}
.

This approximation can be used to quantify the uncertainty associated with
the interpolation-based estimators M̂ ′(0) and M̂ ′′(0).



Exercise. When the final forms of the estimators γ̂ and θ̂ are applied to a
single risky asset, they reduce to

γ̂ = µ̂− 1
2D ξ̂ , θ̂ = ξ̂ .

Use these to estimate γ and θ for each of the following assets given the
share price history {s(d)}Dd=0. How do these γ̂ and θ̂ compare with the
unbiased estimators for γ and θ that you obtained in the previous problem?

(a) Google, Microsoft, Exxon-Mobil, UPS, GE, and Ford stock in 2009;

(b) Google, Microsoft, Exxon-Mobil, UPS, GE, and Ford stock in 2007;

(c) S&P 500 and Russell 1000 and 2000 index funds in 2009;

(d) S&P 500 and Russell 1000 and 2000 index funds in 2007.

Exercise. Compute γ̂ and θ̂ based on daily data for the Markowitz portfolio
with value equally distributed among the assets in each of the groups given
in the previous exercise.


