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Stochastic Models II: Portfolios with Risky Assets

IID Models for Markets. We now consider a market with N risky assets.
Let {si(d)}Dhd=0 be the share price history of asset i. The associated return

rate and growth rate histories are {ri(d)}Dhd=1 and {xi(d)}Dhd=1 where

ri(d) = D

(
si(d)

si(d− 1)
− 1

)
, xi(d) = D log

(
si(d)

si(d− 1)

)
.

Because each si(d) is positive, each ri(d) is in (−D,∞) and each xi(d)
is in (−∞,∞). Let r(d) and x(d) be the N -vectors

r(d) =

r1(d)
...

rN(d)

 , x(d) =

x1(d)
...

xN(d)

 .

The market return rate and growth rate histories can then be expressed
simply as {r(d)}Dhd=1 and {x(d)}Dhd=1 respectively.



An IID model for this market draws Dh random vectors {R(d)}Dhd=1 from
a fixed probablity density q(R) over (−D,∞)N . Such a model is reason-
able when the points {(d, r(d))}Dhd=1 are distributed uniformly in d. This is
hard to visualize when N is not small. You might think a necessary con-
dition for the entire market to have an IID model is that each asset has
an IID model. This can be visualized for each asset by plotting the points
{(d, ri(d))}Dhd=1 in the dr-plane and seeing if they appear to be distributed
uniformly in d. Similar visual tests based on pairs of assets can be carried
out by plotting the points {(d, ri(d), rj(d))}Dhd=1 in R3 with an interactive
3D graphics package.

Visual tests like those described above often show that funds behave more
like IID models than individual stocks or bonds. This means that portfolio
balancing strategies based on IID models might work better for portfolios
composed largely of funds. This is one reason why some investors prefer
investing in funds over investing in individual stocks and bonds.



A better lesson to be drawn from the observation in the last paragraph is
that every sufficiently diverse portfolio of assets in a market will behave
more like an IID model than many of the individual assets in that market.
In other words, IID models for a market can be used to develop portfolio
balancing strategies when the portfolios considered are sufficiently diverse,
even when the behavior of individual assets in that market may not be well
described by the model. This is another reason to prefer holding diverse,
broad-based portfolios. More importantly, this suggests that it is better to
apply visual tests like those described above to representative portfolios
rather than to individual assets in the market.

Remark. Such visual tests can only warn you when IID models might not
be appropriate for describing the data. There are also statistical tests that
can play this role. There is no visual or statistical test that can insure the
validity of using an IID model for a market. However, due to their simplicity,
IID models are often used unless there is a good reason not to use them.



After you have decided to use an IID model for the market, you must gather
statistical information about the return rate probability density q(R). The
mean vector µ and covariance matrix Ξ of R are given by

µ =
∫

R q(R) dR , Ξ =
∫

(R− µ)(R− µ)Tq(R) dR .

Given any sample {R(d)}Dhd=1 drawn from q(R), these have the unbiased
estimators

µ̂ =
Dh∑
d=1

w(d) R(d) , Ξ̂ =
Dh∑
d=1

w(d)

1− w̄
(R(d)− µ̂) (R(d)− µ̂)T .

If we assume that such a sample is given by the return rate data {r(d)}Dhd=1
then these estimators are given in terms of the vector m and matrix V by

µ̂ = m , Ξ̂ = DV .



IID Models for Markowitz Portfolios. Recall that the value of a portfolio
that holds a risk-free balance brf(d) with return rate µrf and ni(d) shares
of asset i during trading day d is

Π(d) = brf(d)
(
1 + 1

D µrf

)
+

N∑
i=1

ni(d)si(d) .

We will assume that Π(d) > 0 for every d. Then the return rate r(d) and
growth rate x(d) for this portfolio on trading day d are given by

r(d) = D

(
Π(d)

Π(d− 1)
− 1

)
, x(d) = D log

(
Π(d)

Π(d− 1)

)
.

Recall that the return rate r(d) for the Markowitz portfolio associated with
the distribution f can be expressed in terms of the vector r(d) as

r(d) = (1− 1Tf)µrf + fTr(d) .



This implies that if the underlying market has an IID model with return rate
probability density q(R) then the Markowitz portfolio with distribution f has
the IID model with return rate probability density qf(R) given by

qf(R) =
∫
δ
(
R− (1− 1Tf)µrf −RTf

)
q(R) dR .

Here δ( · ) denotes the Dirac delta distribution, which can be defined by
the property that for every sufficiently nice function ψ(R)∫

ψ(R) δ
(
R− (1− 1Tf)µrf −RTf

)
dR = ψ

(
(1− 1Tf)µrf + RTf

)
.

Hence, for every sufficiently nice function ψ(R) we have the formula

Ex
(
ψ(R)

)
=
∫
ψ(R) qf(R) dR

=
∫∫

ψ(R) δ
(
R− (1− 1Tf)µrf −RTf

)
q(R) dR dR

=
∫
ψ
(
(1− 1Tf)µrf + RTf

)
q(R) dR .



We can thereby compute the mean µ and variance ξ of qf(R) to be

µ = Ex(R) =
∫ (

(1− 1Tf)µrf + RTf
)
q(R) dR

= (1− 1Tf)µrf

∫
q(R) dR +

(∫
R q(R) dR

)T
f

= (1− 1Tf)µrf + µTf ,

ξ = Ex
(
(R− µ)2

)
=
∫ (

(1− 1Tf)µrf + RTf − µ
)2
q(R) dR

=
∫ (

RTf − µTf
)2
q(R) dR =

∫
fT(R− µ)(R− µ)Tf q(R) dR

= fT
(∫

(R− µ)(R− µ)Tq(R) dR
)

f = fTΞ f ,

where we have used the facts that∫
q(R) dR = 1 ,

∫
R q(R) dR = µ ,∫

(R− µ)(R− µ)Tq(R) dR = Ξ .



If we assume that the return rate history {r(d)}Dhd=1 is an IID sample drawn
from a probability density q(R) then unbiased estimators of the associated
mean µ and variance Ξ are given in terms of m and V by

µ̂ = m , Ξ̂ = DV .

Then the Markowitz portfolio with distribution f has the return rate history
{r(d)}Dhd=1 with

r(d) = (1− 1Tf)µrf + fTr(d) .

Moreover, this history is an IID sample drawn from a probability density
qf(R) and the formulas on the previous page show that the mean µ and
variance ξ of qf(R) have the unbiased estimators

µ̂ = µrf(1− 1Tf) + mTf , ξ̂ = DfTVf .



Inequalities. In the next section we will use the Cauchy inequality, also
called the Cauchy-Schwarz inequality. Often this inequality is first seen
when studying vectors, where for any vectors u and v it takes the form

|u · v| ≤ ‖u‖ ‖v‖ ,

where ‖ · ‖ denotes the Euclidean norm (length). This inequality will be
an equality if and only if u and v are proportional. Alternatively, when the
vectors are Dh-dimesional it can be written in the form Dh∑

d=1

u(d) v(d)

2

≤

 Dh∑
d=1

u(d)2

 Dh∑
d=1

v(d)2

 .

If we take u(d) = 1 for every d then the Cauchy inequalty yields Dh∑
d=1

v(d)

2

≤

 Dh∑
d=1

12

 Dh∑
d=1

v(d)2

 = Dh

Dh∑
d=1

v(d)2 .



We will also use an integral form of the Cauchy inequality, commonly called
the Cauchy inequality, Schwarz inequality, or Cauchy-Schwarz inequality.
For any real-valued functions f(z) and g(z) this inequality takes the form(∫ b

a
f(z) g(z) dz

)2

≤
(∫ b

a
f(z)2 dz

)(∫ b
a
g(z)2 dz

)
,

where
∫ b
a ·dz denotes the definite integral over a nonempty interval (a, b).

The Cauchy inequality will be an equality if and only if f(z) and g(z) are
proportional over (a, b). For example, if p(z) is a positive probability den-
sity over (a, b) and we take

f(z) = z2
√
p(z) and g(z) =

√
p(z) ,

then because these functions are not proportional over any interval (a, b),
the Cauchy inequality yields the strict inequality(∫ b

a
z2p(z) dz

)2

<

(∫ b
a
z4p(z) dz

)(∫ b
a
p(z) dz

)
=
∫ b
a
z4p(z) dz .



In the next section we will also use the Jensen inequality. This states that
if the function f(z) is convex (concave) over an interval [a, b], the points
{z(d)}Dhd=1 all lie within [a, b], and the nonnegative weights {w(d)}Dhd=1
sum to one, then

f(z̄) ≤ f(z)
(
f(z) ≤ f(z̄)

)
,

where

z̄ =
Dh∑
d=1

z(d)w(d) , f(z) =
Dh∑
d=1

f(z(d))w(d) .

For example, if we take f(z) = zp for some p > 1, so that f(z) is convex
over [0,∞), and we take z(d) = w(d) for every d then because the points
{w(d)}Dhd=1 all lie within [0,1], the Jensen inequality yields

w̄p =

 Dh∑
d=1

w(d)2

p ≤ Dh∑
d=1

w(d)p+1 = wp .



The Jensen inequality can be proved for the case when f(z) is convex and
differentiable over [a, b] by starting from the inequality

f(z) ≥ f(z̄) + f ′(z̄)(z − z̄) for every z ∈ [a, b] .

This inequality simply says that the tangent line to the graph of f at z̄
lies below the graph of f over [a, b]. By setting z = z(d) in the above
inequality, multiplying both sides by w(d), and summing over d we obtain

Dh∑
d=1

f(z(d))w(d) ≥
Dh∑
d=1

(
f(z̄) + f ′(z̄)(z(d)− z̄)

)
w(d)

= f(z̄)
Dh∑
d=1

w(d) + f ′(z̄)

 Dh∑
d=1

(
z(d)− z̄

)
w(d)

 .

The Jensen inequality then follows from the definitions of z̄ and f(z).

Remark. There is an integral version of the Jensen inequality that we do
not give here because we do not need it.



Uncertainity in the Return Rate Estimators. Suppose that {R(d)}Dhd=1
is an IID sample drawn from a probability density qf(R) with mean µ and
variance ξ. Let µ̂ and ξ̂ be the unbiased estimators

µ̂ =
Dh∑
d=1

w(d)R(d) , ξ̂ =
1

1− w̄

Dh∑
d=1

w(d)
(
R(d)− µ̂

)2
.

We would like to quantify how close these estimators are to µ and ξ for the
Markowitz portfolio given by f .

In the previous lecture we estimated how close µ̂ is to µ by computing its
variance. We found that

Var(µ̂) = Ex
(
(µ̂− µ)2

)
= w̄ ξ , where w̄ =

Dh∑
d=1

w(d)2 .

This shows that µ̂ converges to µ like
√
w̄ as w̄ → 0.



Remark. The Cauchy inequality implies that

1 =

 Dh∑
d=1

1 · w(d)

2

≤

 Dh∑
d=1

12

 Dh∑
d=1

w(d)2

 = Dh w̄ .

This shows that for any weighting we have w̄ ≥ 1/Dh. Therefore the
variance is smallest for uniform weights when we have w(d) = 1/Dh.

Remark. For uniform weights the formula for Var(µ̂) reduces to

Var(µ̂) =
1

Dh
ξ .

Therefore µ̂ converges to µ like 1/
√
Dh as Dh →∞ for uniform weights.

The above considerations suggest that the uncertainties associated with
the unbiased estimator µ̂ can be measured by(

w̄ ξ̂
)1

2 .



We can also estimate how close ξ̂ is to ξ by computing its variance. To do
this we must assume that the probability density qf(R) has a finite fourth
moment. Let ξ4 be the centered fourth moment, which is given by

ξ4 = Ex
(
(R− µ)4

)
=
∫ ∞
−D

(R− µ)4qf(R) dR <∞ .

Observe that by the strict Cauchy inequality we have

ξ4 =
∫ ∞
−D

(R− µ)4qf(R) dR >

(∫ ∞
−D

(R− µ)2qf(R) dR
)2

= ξ2 .

The first step is to let R̃(d) = R(d)− µ and express ξ̂ as

ξ̂ =
1

1− w̄

 Dh∑
d=1

w(d)R̃(d)2 − (µ̂− µ)2


=

1

1− w̄

 Dh∑
d=1

w(d)R̃(d)2 −
Dh∑
d1=1

Dh∑
d2=1

w(d1)w(d2)R̃(d1)R̃(d2)

 .



By squaring this expression and relabeling some indices we obtain

ξ̂2 =
Dh∑
d=1

Dh∑
d′=1

w(d)w(d′)

(1− w̄)2
R̃(d)2R̃(d′)2

− 2
Dh∑
d=1

Dh∑
d1=1

Dh∑
d2=1

w(d)w(d1)w(d2)

(1− w̄)2
R̃(d)2R̃(d1)R̃(d2)

+
Dh∑
d1=1

Dh∑
d2=1

Dh∑
d3=1

Dh∑
d4=1

(
w(d1)w(d2)w(d3)w(d4)

(1− w̄)2

R̃(d1)R̃(d2)R̃(d3)R̃(d4)

)
.

The next step is to compute Ex
(
ξ̂2
)
, which requires us to compute

Ex
(
R̃(d)2R̃(d′)2

)
, Ex

(
R̃(d)2R̃(d1)R̃(d2)

)
,

Ex
(
R̃(d1)R̃(d2)R̃(d3)R̃(d4)

)
.



Let δdd′ denote the Kronecker delta, which is defined by

δdd′ =

1 if d = d′ ,

0 if d 6= d′ .

Because R̃(d) and R̃(d′) are independent when d 6= d′, and because
Ex
(
R̃(d)

)
= 0, Ex

(
R̃(d)2

)
= ξ, and Ex

(
R̃(d)4

)
= ξ4, we see that

Ex
(
R̃(d)2R̃(d′)2

)
= δdd′ ξ4 +

(
1− δdd′

)
ξ2 ,

Ex
(
R̃(d)2R̃(d1)R̃(d2)

)
= δd1d2

(
δdd1

ξ4 +
(
1− δdd1

)
ξ2
)
,

Ex
(
R̃(d1)R̃(d2)R̃(d3)R̃(d4)

)
= δd1d2

δd2d3
δd3d4

ξ4

+ δd1d2
δd3d4

(
1− δd1d3

)
ξ2

+ δd1d3
δd4d2

(
1− δd1d4

)
ξ2

+ δd1d4
δd2d3

(
1− δd1d2

)
ξ2 .



Then the expected value of the quantity ξ̂2 given two slides back is

Ex
(
ξ̂2
)

=
w̄ − 2w2 + w3

(1− w̄)2
ξ4 +

1− 3w̄ + 2w2 + 3w̄2 − 3w3

(1− w̄)2
ξ2 ,

where w̄, w2, and w3 are given by

w̄ =
Dh∑
d=1

w(d)2 , w2 =
Dh∑
d=1

w(d)3 , w3 =
Dh∑
d=1

w(d)4 .

Therefore the variance of ξ̂ is

Var
(
ξ̂
)

= Ex
(
(ξ̂ − ξ)2

)
= Ex

(
ξ̂2
)
− ξ2

=
w̄ − 2w2 + w3

(1− w̄)2
ξ4 +

−w̄ + 2w2 + 2w̄2 − 3w3

(1− w̄)2
ξ2

=
w̄ − 2w2 + w3

(1− w̄)2

(
ξ4 − ξ2

)
+ 2

w̄2 − w3

(1− w̄)2
ξ2 .



Remark. For uniform weights the formula for Var(ξ̂) reduces to

Var
(
ξ̂
)

=
1

Dh

(
ξ4 − ξ2

)
+

2

Dh(Dh − 1)
ξ2 .

Therefore ξ̂ converges to ξ like 1/
√
Dh as Dh →∞ for uniform weights.

The coefficient in front of (ξ4−ξ2) above is the smallest possible because,
by the Cauchy inequality, the general coefficient of (ξ4 − ξ2) satisfies

w̄ − 2w2 + w3

(1− w̄)2
=

1

(1− w̄)2

Dh∑
d=1

(
1− w(d)

)2
w(d)2

≥
1

(1− w̄)2

1

Dh

 Dh∑
d=1

(
1− w(d)

)
w(d)

2

=
1

(1− w̄)2

1

Dh
(1− w̄)2 =

1

Dh
.



In order to treat cases when the weights are not uniform it is useful to derive
an upper bound for Var

(
ξ̂
)

in which the coefficients of (ξ4 − ξ2) and ξ2

depend on w̄ but not on w2 and w3. Because the Jensen inequality implies
that w̄3 ≤ w3, the coefficient of ξ2 can be bounded as

w̄2 − w3

(1− w̄)2
≤
w̄2 − w̄3

(1− w̄)2
=

w̄2

1− w̄
.

The coefficient of (ξ4 − ξ2) requires more work. It can be checked that
f(z) = z − 2z2 + z3 is concave over [0, 2

3]. Hence, when the weights

{w(d)}Dhd=1 all lie in [0, 2
3] the Jensen inequality with z(d) = w(d) yields

w − 2w2 + w3 = f(w) ≤ f(w̄) = w̄ − 2w̄2 + w̄3 .

In that case the coefficient of (ξ4 − ξ2) can be bounded as

w̄ − 2w2 + w3

(1− w̄)2
≤
w̄ − 2w̄2 + w̄3

(1− w̄)2
= w̄ .



Therefore if every w(d) ≤ 2
3 then we obtain the upper bound

Var
(
ξ̂
)
≤ w̄

(
ξ4 − ξ2

)
+

2w̄2

1− w̄
ξ2 .

This shows that ξ̂ converges to ξ like
√
w̄ as w̄ → 0 for arbitrary weights.

Moreover, the above inequality is an equality when the weights are uniform.

The above considerations suggest that the uncertainties associated with
the unbiased estimator ξ̂ can be measured by(

w̄
(
ξ̂4 − ξ̂2

)
+

2w̄2

1− w̄
ξ̂2
)1

2

,

where we choose to use the (biased) estimator of ξ4 given by

ξ̂4 =
1

(1− w̄)2

Dh∑
d=1

w(d)
(
R(d)− µ̂

)4
.


