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Stochastic Models I: One Risky Asset

Investors have long followed the old adage “don’t put all your eggs in one
basket” by holding diversified portfolios. However, before MPT the value of
diversification had not been quantified. Key aspects of MPT are:

. it uses the return rate mean as a proxy for reward;

it uses volatility as a proxy for risk;

it analyzes Markowitz portfolios;

it shows diversification reduces volatility through covariances;

5. it identifies the efficient frontier as the place to be.

The orignial form of MPT did not give guidance to investors about where to
be on the efficient frontier. We will now begin to build stochasitc models that
can be used in conjunction with the original MPT to address this question.
By doing so, we will see that maximizing the return rate mean is not the
best strategy for maximizing your reward.
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IID Models for an Asset. We begln by building models of one risky asset
with a share price history {s(d)}d o- Let {r(d)}d , be the associated
return rate history. Because each s(d) is positive, each r(d) lies in the in-
terval (—D, oco). An independent, identically-distributed (1ID) model for this
history simply independently draws Dj, random numbers {R(d)}d h, from
(—D, c0) in accord with a fixed probability density g(R) over (—D, o).
This means that ¢q(R) is a nonnegative integrable function such that

| aRydr=1,

and that the probability that each R(d) takes a value inside any interval
[R1, R>] C (=D, 00) is given by

Pr{R(d) € [R1, Ro]} = /R]qu(R) dR.

Here capitol letters R(d) denote random numbers drawn from (—D, co) in
accord with the probability density ¢q( R) rather than real return rate data.



Because the random numbers {R(d)}gil are drawn from (—D, c0) in
accord with the probability density q( R) independent of each other, there
is no correlation of R(d) with R(d’) when d # d'. In particular, if we plot
the points {(R(d), R(d + c)>}§£? in the rr’-plane for any ¢ > 0 they will
be distributed in accord with the probability density q(r)q(r"). Therefore
if the return rate history {r(d)}g:h 1 Is mimiced by such a model then the
points {(r(d),r(d+ c))}fl) QIC plotted in the rr'-plane should appear to be
distributed in a way consistant with the probability density q(r)q(r"). Such

plots are called scatter plots.

In general a scatter plot will not show independence when cis small. This
IS because the behavior of an asset on any given trading day generally cor-
relates with its behavior on the previous trading day. However, if a scatter
plot shows independence for some c that is small compared to Dj, the an
[ID model might still be good. Such a time c is called the correlation time.



Because the random numbers {R(d)}gil are each drawn from (—D, co)
in accord with the same probability density ¢q(R), if we plot the points
{(d, R(d))}fl_)gl in the dr-plane they will usually be distributed in a way

that looks uniform in d. Therefore if the return rate history {T(d)}clz):hl is

mimiced by such a model then the points {(d, r(d))}fl) . plotted in the
dr-plane should appear to be distributed in a way that is unifrom in d.

Exercise. Plot {(r(d),(d + 1))}7" and {(d,r(d))} 2, for each of

the following assets and explain which might be good candidates to be
mimiced by an |ID model.
(a) Google, Microsoft, Exxon-Mobil, UPS, GE, and Ford stock in 2013;
(b) Google, Microsoft, Exxon-Mobil, UPS, GE, and Ford stock in 2008;
(c) S&P 500 and Russell 1000 and 2000 index funds in 2013;
(d) S&P 500 and Russell 1000 and 2000 index funds in 2008.



Remark. We have adopted IID models because they are simple. It is not
hard to develop more complicated stochastic models. For example, we
could use a different probability density for each day of the week rather
than treating all trading days the same way. Because there are usually
five trading days per week, Monday through Friday, such a model would
require calibrating five times as many means and covariances with one
fifth as much data. There would then be greater uncertainty associated
with the calibration. Moreover, we then have to figure out how to treat
weeks that have less than five trading days due to holidays. Perhaps just
the first and last trading days of each week should get their own probability
density, no matter on which day of the week they fall. Before increasing the
complexity of a model, you should investigate whether the costs of doing
so outweigh the benefits. Specifically, you should investigate whether or
not there is benefit in treating any one trading day of the week differently
than the others before building a more complicated models.



Remark. IID models are also the simplest models that are consistent with
the way any portfolio theory is used. Specifically, to use any portfolio theory
you must first calibrate a model from historical data. This model is then
used to predict how a set of ideal portfolios might behave in the future.
Based on these predictions one selects the ideal portfolio that optimizes
some objective. This strategy makes the implicit assumption that in the
future the market will behave statistically as it did in the past.

This assumption requires the market statistics to be stable relative to its
dynamics. But this requires future states to decorrelate from past states.
Markov models are characterized by the assumption that possible future
states are independent of past states, which maximizes this decorrelation.
lID models are the simplest Markov models. All the models discussed in
the previous remark are also Markov models. We will use only 11D models.



Return Rate Probability Densities. Once you have decided to use an
[ID model for a particular asset, you might think the next goal is to pick an
appropriate probability density ¢(R). However, that is neither practical nor
necessary. Rather, the goal is to identify appropriate statistical information
about q(R) that sheds light on the market. Ideally this information should
be insensitive to details of g( R) within a large class of probability densities.
Statisticians call such an approach nonparametric.

The expected value of any function 1/ (R) is given by

Ex(v(R) = [ (R q(R) dR,

provided |¢(R)|q(R) is integrable. Because we have been collecting
mean and covariance return rate data, we will assume that the probability
densities satisfy

> 2
/DR ¢(R) dR < co.



The mean . and variance £ of R are then

¢ = Var(R) = Ex((R-w)?) = [ (R-w)?q(R)dR.

However we do not know these. Rather, we must infer them from the data,
at least approximately. Given D,;, samples {R(d)}gi1 that are drawn from
the density q(R), we can construct an estimator i of u by

b= Ex(R) = /OZqu)dR,

Dy,

i= Y w(d) R(d).

d=1
This is so-called sample mean is an unbiased estimator of . because
Dy, Dy,

Ex() = Y w(d) Ex(R(d)) = 3 w(d)p=p.

d=1 d=1



We can estimate how close [ is to u by computing its variance as

Var(a) = Ex((f - u)2>

h
= Ex(z S w(d) w(d) (R(d) — p) (R(d’)—u))

d=1d'=1
Dy,

=3 z w(d) w(d") Ex((R(d) — ) (R(d) — )

dDhl = Dy,
= > w(d)?Ex((R(d) —p)?) = > w(d)’¢ = o ¢.
d=1 d=1

Here the off-diagonal terms in the double sum vanish because

Ex((R(d) — u) (R(d") —p)) =0 whend # d'.

The fact Var () = wé implies that /i converges to u like vw as D;, — .
This rate is fastest for uniform weights, when itis 1/\/D;, as D;, — oc.



We can construct an unbiased estimator of £ that is proportional to the
so-called sample variance as

D
£ = ﬁ f w(d) (R(d) - ﬁ)Q.
d=1

Indeed, from the calculation on the previous slide we confirm that

] 1 o 2
Ex (&) = T EX( > w(d)(R(d) —p)” — (A- u)2>

d=1
D w E ~ 2
_ i %EX((R(d)—M)2>_ X(g_lu_u_;u) )
d=1
Dy,

_Qwld),  @E _ & @E _,

dll_w 1 —w 1 —w 1—w

Remark. The factor 1/(1 — w) in £ is the same factor that appears in V.



Growth Rate Probability Densities. Given D;, samples {R(d)}ggl that
are drawn from the return rate probability density ¢(R), the associated
simulated share prices satisfy

S(d) = (1—|—%R(d)) S(d—1), ford=1,---,Dy.
If we set S(0) = s(0) then you can easily see that

d
S(dy =TI (1+HR(d))s(0).
d'=1
The growth rate X (d) is related to the return rate R(d) by

epX(@D) =1 4 LR(d).

In other words, X (d) is the growth rate that yeilds a return rate R(d) on
trading day d. The formula for S(d) then takes the form

d
S(d) = exp (ll) 3 X(d’)) s(0) .

d'=1



When {R(d)}dD , is an IID process drawn from the density q(R) over

(—D, ), it follows that {X (d)}dD ™, is an IID process drawn from the
density p(X) over (—oo,o0) where p(X)dX = q(R)dR with X and R

related by
X =Dlog(1+ HR), R:D<e%X—1) .
More explicitly, the densities p(X) and ¢(R) are related by
plDlog(1l + 1R
p(X) =q(D (0¥ 1)) ed¥,  q(r) = (Dloo(t + 51))
1+ 4R

Because our models will involve means and variances, we will require that

/OO X2p(X)dX = /OO D2log(1 + %R)Qq(R)dR < oo,

/ D? (eD ) p(X)dX = / R%q(R)dR < 0.



The big advantage of working with p(X) rather than ¢(R) is the fact that
S(d)) 1 ,
log ( = — X(d).
s(0) D dgl

In other words, 10g(S(d)/s(0)) is a sum of an IID process. It is easy to
compute the mean and variance of this quantity in terms of those of X.

The mean ~ and variance 0 of X are

y = Ex(X) = /_0; X p(X)dX

6 = Var(X) = Ex((X —)?) = /

For the mean of l1og(S(d)/s(0)) we find that

SO\ _ 1« /
Ex(log(s(m)) =5 > EX(X(d )) = £,

d'=1

©.@)

(X ) p(X)dX .




For the variance of log(S(d)/s(0)) we find that
S(d 1 ¢ , ?
vrfos(8)) =+ (5 £ xe- 3) |

— % Ex((dijl (x(d) - v))2>
EX(Z > (x(d) —7) (X(d”>—v)>

1d"'=1

, d
— ﬁ d/zzjl Ex((X(d) - 7)2) 50

Here the off-diagonal terms in the double sum vanish because

Ex((X(d’) - 7) (X(d”) - 7)) =0 whend’'#d.



Therefore the expected growth and variance of the |ID model asset at time
t =d/D years is

S(d S(d
Ex(log(s((();)) = ~t, Var(log(s((OD) =10t.

Remark. The IID model suggests that the growth rate mean ~ is a good
proxy for the reward of an asset and that \@ is a good proxy for its risk.
However, these are not the proxies chosen by MPT when it is applied to a
portfolio consisting of one risky asset. These proxies can be approximated
by 4 and \@‘where 4 and @ are the unbiased estimators of v and 6 given
by

Dy,

= > w(d) X(d), 0

d=1

D
> 1 (K@ -7)
d=1



Normal Growth Rate Model. We can illustrate what is going on with the
simple [ID model where p(X) is the normal or Gaussian density with mean
~ and variance 6, which is given by

1 (X —7)?
p(X)—Wexp(— T )

Let { X (d)} 32, be a sequence of IID random variables drawn from p(X).
Let {Y'(d)}352 1 be the sequence of random variables defined by

1
Y(d)== ) X(d) foreveryd=1,: -, 0.
d =1
You can easily check that

Ex(Y(d) =~, Var(Y(d)) = g.

You can also check that Ex(Y (d)|Y(d — 1)) = ©1y(d — 1) 4+ %v. So
the variables Y (d) are neither independent nor identically distributed.



It can be shown (the details are not given here) that Y (d) is drawn from
the normal density with mean ~ and variance 8/d, which is given by

. 2
pd(Y) — QLT(-Q exp (_ (Y 2;’) d> |

d
Because S(d)/s(0) = eDY (4) the mean return at day d is

Y(d) ,/ / ( Y - 7)QdJr%Y> dy
o~y — 192
= \//exp(—(y er p%) d-l-l%(’ﬁ-le@)) dy

= exp(H(v+ 2p0)) -

This grows at rate v + %0, which is higher than the rate ~ that most
investors see. Indeed, we see that p,(Y') becomes more sharply peaked
around Y = ~ as d increases.




By setting d = 1 in the above formula, we see that the return rate mean is
1
1w=Ex(R) =D Ex(eFX - 1) = D (exp(H(v+5p0)) — 1) .

Therefore p > v+ 550, with p = v+ 5556 when 3 (v + 5550) << 1. This
shows that most investors will see a return rate that is be/oixv the return rate
mean p — far below in volatile markets. This is because eDX amplifies the
tail of the normal density. For a more realistic I[ID model with a density
p(X) that decays more slowly than a normal density as X — oo, this
difference can be more striking. Said another way, most investors will not

see the same return as Warren Buffett, but his return will boost the mean.

The normal growth rate model confirms that ~ is a better proxy for how well
a risky asset might perform than n because p,;(Y') becomes more peaked
around Y = ~ as d increases. We will extend this result to a general class
of IID models that are more realistic.



Exercise. Use the unbiased estimators fi, £, 7, and § given by

=l @, E= S (@) - i)
Dle | D — 1d=1 |
N = 1 f: x(d) 6 = 1 f: (ﬂf(d) _’AY)Q
Dle | D — 1d=1 |

to estimate pu, &, ~v, and 0 given the share price history {S(d)}oll):o with
s(d) s(d)
d) =D —1 d) = DIlo
r@=p (25 1) et =pwe( K0
for each of the following assets. How do /i and 7 compare? & and 97
(a) Google, Microsoft, Exxon-Mobil, UPS, GE, and Ford stock in 2009;
b) Google, Microsoft, Exxon-Mobil, UPS, GE, and Ford stock in 2007;

(b)
(c) S&P 500 and Russell 1000 and 2000 index funds in 2009;
(d) S&P 500 and Russell 1000 and 2000 index funds in 2007.




